269
Views
6
CrossRef citations to date
0
Altmetric
Review Article

An overview on the methods of determining the activity of Indoleamine 2, 3-Dioxygenase 1

, , , &
Pages 724-731 | Received 10 Jul 2018, Accepted 05 Sep 2018, Published online: 05 Dec 2018

References

  • Lang K, Entschladen F, Weidt C, et al. Tumor immune escape mechanisms: impact of the neuroendocrine system. Cancer Immunol Immunother. 2006;55:749–760.
  • Lakshmi Narendra B, Eshvendar Reddy K, Shantikumar S, et al. Immune system: a double-edged sword in cancer. Inflamm Res. 2013;62:823–834.
  • Candeias SM, Gaipl US. The immune system in cancer prevention, development and therapy. Acamc. 2016;16:101.
  • Zimmerman C, Brduscha-Riem K, Blaser C, et al. Visualization, characterization, and turnover of CD8+ memory T cells in virus-infected hosts. J Exp Med. 1996;183:1367–1375.
  • Appay V, van Lier RA, Sallusto F, et al. Phenotype and function of human T lymphocyte subsets: consensus and issues. Cytometry A. 2008;73:975–983.
  • Yang Y. Cancer immunotherapy: harnessing the immune system to battle cancer. J Clin Invest. 2015;125:3335–3337.
  • Ruella M, Kalos M. Adoptive immunotherapy for cancer. Immunol Rev. 2014;257:14–38.
  • Beatty GL, Gladney WL. Immune escape mechanisms as a guide for cancer immunotherapy. Clin Cancer Res. 2015;21:687–692.
  • Bhatia A, Kumar Y. Cellular and molecular mechanisms in cancer immune escape: a comprehensive review. Expert Rev Clin Immunol. 2014;10:41–62.
  • Liu Y, Cao X. Immunosuppressive cells in tumor immune escape and metastasis. J Mol Med. 2016;94:509–522.
  • Villalba M, Rathore MG, Lopez-Royuela N, et al. From tumor cell metabolism to tumor immune escape. Int J Biochem Cell Biol. 2013;45:106–113.
  • Mellor AL, Munn DH. Ido expression by dendritic cells: tolerance and tryptophan catabolism. Nat Rev Immunol. 2004;4:762–774.
  • Kadoya A, Tone S, Maeda H, et al. Gene structure of human indoleamine 2,3-dioxygenase. Biochem Biophys Res Commun. 1992;189:530–536.
  • Moretti S, Menicali E, Voce P, et al. Indoleamine 2,3-Dioxygenase 1 (IDO1) is up-regulated in thyroid carcinoma and drives the development of an immunosuppressant tumor microenvironment. J Clin Endocrinol Metab. 2014;99:E832–E840.
  • Fatokun AA, Hunt NH, Ball HJ. Indoleamine 2,3-dioxygenase 2 (IDO2) and the kynurenine pathway: characteristics and potential roles in health and disease. Amino Acids. 2013;45:1319–1329.
  • Platten M, von Knebel Doeberitz N, Oezen I, et al. Cancer immunotherapy by targeting IDO1/TDO and their downstream effectors. Front Immunol. 2015;5:673.
  • Kolawole AO, Hixon BP, Dameron LS, et al. Catalytic activity of human indoleamine 2,3-dioxygenase (hIDO1) at low oxygen. Arch Biochem Biophys. 2015;570:47–57.
  • Yeung AW, Terentis AC, King NJ, et al. Role of indoleamine 2,3-dioxygenase in health and disease. Clin Sci. 2015;129:601–672.
  • Munn DH, Shafizadeh E, Attwood JT, et al. Inhibition of T cell proliferation by macrophage tryptophan catabolism. J Exp Med. 1999;189:1363–1372.
  • Munn DH, Zhou M, Attwood JT, et al. Prevention of allogeneic fetal rejection by tryptophan catabolism. Science. 1998;281:1191–1193.
  • Klockow JL, Glass TE. Development of a fluorescent chemosensor for the detection of kynurenine. Org Lett. 2013;15:235–237.
  • Hoshi M, Ito H, Fujigaki H, et al. Indoleamine 2,3-dioxygenase is highly expressed in human adult T-cell leukemia/lymphoma and chemotherapy changes tryptophan catabolism in serum and reduced activity. Leuk Res. 2009;33:39–45.
  • Jochems C, Fantini M, Fernando RI, et al. The IDO1 selective inhibitor epacadostat enhances dendritic cell immunogenicity and lytic ability of tumor antigen-specific T cells. Oncotarget. 2016;7:37762–37772.
  • Moffett JR, Namboodiri MA. Tryptophan and the immune response. Immunol Cell Biol. 2003;81:247–265.
  • Badawy AA. Targeting tryptophan availability to tumors: the answer to immune escape? Immunol Cell Biol. 2018;1–9.
  • Fallarino F, Grohmann U, Vacca C, et al. T cell apoptosis by tryptophan catabolism. Cell Death Differ. 2002;9:1069–1077.
  • Ulivieri C, Baldari CT. T-cell-based immunotherapy of autoimmune diseases. Exper Rev Vaccines. 2013;12:297–310.
  • Laich A, Neurauter G, Widner B, et al. More rapid method for simultaneous measurement of tryptophan and kynurenine by HPLC. Clin Chem. 2002;48:579–581.
  • Schroecksnadel K, Kaser S, Ledochowski M, et al. Increased degradation of tryptophan in blood of patients with rheumatoid arthritis. J Rheumatol. 2003;30:1935–1939.
  • Labadarios D, McKenzie DY, Dickerson JW, et al. Metabolic abnormalities of tryptophan and nicotinic acid in patients with rheumatoid arthritis. Rheumatol Rehabil. 1978;17:227–232.
  • Ogawa T, Matson WR, Beal MF, et al. Kynurenine pathway abnormalities in Parkinson’s disease. Neurology. 1992;42:1702–1706.
  • Beal MF, Matson WR, Swartz KJ, et al. Kynurenine pathway measurements in Huntington’s disease striatum: evidence for reduced formation of kynurenic acid. J Neurochem. 1990;55:1327–1339.
  • Zhai L, Spranger S, Binder DC, et al. Molecular pathways: targeting IDO1 and other tryptophan dioxygenases for cancer immunotherapy. Clin Cancer Res. 2015;21:5427–5433.
  • Sheridan C. IDO inhibitors move center stage in immuno-oncology. Nat Biotechnol. 2015;33:321–322.
  • Lob S, Konigsrainer A, Rammensee HG, et al. Inhibitors of indoleamine-2,3-dioxygenase for cancer therapy: can we see the wood for the trees? Nat Rev Cancer. 2009;9:445–452.
  • Cheong JE, Ekkati A, Sun L. A patent review of IDO1 inhibitors for cancer. Expert Opin Ther Pat. 2018;28:317–330.
  • Röhrig UF, Majjigapu SR, Vogel P, et al. Challenges in the discovery of Indoleamine 2,3-Dioxygenase 1 (IDO1) inhibitors. J Med Chem. 2015;58:9421–9437.
  • Weng T, Qiu X, Wang J, et al. Recent discovery of indoleamine-2,3-dioxygenase 1 inhibitors targeting cancer immunotherapy. Eur J Med Chem. 2018;143:656–669.
  • Yue EW, Sparks R, Polam P, et al. INCB24360 (Epacadostat), a highly potent and selective Indoleamine-2,3-dioxygenase 1 (IDO1) inhibitor for immuno-oncology. ACS Med Chem Lett. 2017;8:486–491.
  • Science Translational Medicine [Internet]. America: DEREK LOWE; [cited 2018 Apr 9]. Available from: http://blogs.sciencemag.org/pipeline/archives/2018/04/09/ido-inhibitors-hit-a-wall
  • Krcmova L, Solichova D, Melichar B, et al. Determination of neopterin, kynurenine, tryptophan and creatinine in human serum by high throuput HPLC. Talanta. 2011;85:1466–1471.
  • Seifert J. Assay of tryptophan 2,3-dioxygenase using liver slices and high-performance liquid chromatography. J Chromatogr. 1993;614:227–231.
  • Wirleitner B, Rudzite V, Neurauter G, et al. Immune activation and degradation of tryptophan in coronary heart disease. Eur J Clin Invest. 2003;33:550–554.
  • Kema IP, Meijer WG, Meiborg G, et al. Profiling of tryptophan-related plasma indoles in patients with carcinoid tumors by automated, on-line, solid-phase extraction and HPLC with fluorescence detection. Clin Chem. 2001;47:1811–1820.
  • Zhao J, Gao P, Zhu D. Optimization of Zn2+-containing mobile phase for simultaneous determination of kynurenine, kynurenic acid and tryptophan in human plasma by high performance liquid chromatography. J Chromatogr B Analyt Technol Biomed Life Sci. 2010;878:603–608.
  • Vignau J, Jacquemont MC, Lefort A, et al. Simultaneous determination of tryptophan and kynurenine in serum by HPLC with UV and fluorescence detection. Biomed Chromatogr. 2004;18:872–874.
  • Liu L, Chen Y, Zhang Y, et al. Determination of tryptophan and kynurenine in human plasma by liquid chromatography-electrochemical detection with multi-wall carbon nanotube-modified glassy carbon electrode. Biomed Chromatogr. 2011;25:938–942.
  • Vaarmann A, Kask A, Maeorg U. Novel and sensitive high-performance liquid chromatographic method based on electrochemical coulometric array detection for simultaneous determination of catecholamines, kynurenine and indole derivatives of tryptophan. J Chromatogr B Analyt Technol Biomed Life Sci. 2002;769:145–153.
  • Amirkhani A, Heldin E, Markides KE, et al. Quantitation of tryptophan, kynurenine and kynurenic acid in human plasma by capillary liquid chromatography-electrospray ionization tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2002;780:381–387.
  • Orsatti L, Speziale R, Orsale MV, et al. A single-run liquid chromatography mass spectrometry method to quantify neuroactive kynurenine pathway metabolites in rat plasma. J Pharm Biomed Anal. 2015;107:426–431.
  • Wirleitner B, Schroecksnadel K, Winkler C, et al. Resveratrol suppresses interferon-gamma-induced biochemical pathways in human peripheral blood mononuclear cells in vitro. Immunol Lett. 2005;100:159–163.
  • Widner B, Werner ER, Schennach H, et al. Simultaneous measurement of serum tryptophan and kynurenine by HPLC. Clin Chem. 1997;43:2424–2426.
  • Takikawa O, Kuroiwa T, Yamazaki F, et al. Mechanism of interferon-gamma action. Characterization of indoleamine 2,3-dioxygenase in cultured human cells induced by interferon-gamma and evaluation of the enzyme-mediated tryptophan degradation in its anticellular activity. J Biol Chem. 1988;263:2041–2048.
  • Littlejohn TK, Takikawa O, Skylas D, et al. Expression and purification of recombinant human Indoleamine 2, 3-dioxygenase. Protein Expr Purif. 2000;19:22–29.
  • Matin A, Streete IM, Jamie IM, et al. A fluorescence-based assay for indoleamine 2,3-dioxygenase. Anal Biochem. 2006;349:96–102.
  • Tomek P, Palmer BD, Kendall JD, et al. Formation of fluorophores from the kynurenine pathway metabolite N-formylkynurenine and cyclic amines involves transamidation and carbon–carbon bond formation at the 2-position of the amine. BBA-Gen Subjects. 2015;1850:1772–1780.
  • Tomek P, Palmer BD, Flanagan JU, et al. Formation of an N-formylkynurenine-derived fluorophore and its use for measuring indoleamine 2,3-dioxygenase 1 activity. Anal Bioanal Chem. 2013;405:2515–2524.
  • Uyttenhove C, Pilotte L, Theate I, et al. Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat Med. 2003;9:1269–1274.
  • Silk JD, Lakhal S, Laynes R, et al. IDO induces expression of a novel tryptophan transporter in mouse and human tumor cells. J Immunol. 2011;187:1617–1625.
  • Peng YH, Ueng SH, Tseng CT, et al. Important hydrogen bond networks in Indoleamine 2,3-Dioxygenase 1 (IDO1) inhibitor design revealed by crystal structures of imidazoleisoindole derivatives with IDO1. J Med Chem. 2016;59:282–293.
  • Seegers N, van Doornmalen AM, Uitdehaag JC, et al. High-throughput fluorescence-based screening assays for tryptophan-catabolizing enzymes. J Biomol Screen. 2014;19:1266–1274.
  • Shiokawa Z, Kashiwabara E, Yoshidome D, et al. Discovery of a novel scaffold as an Indoleamine 2,3-Dioxygenase 1 (IDO1) inhibitor based on the pyrrolopiperazinone alkaloid, longamide B. Chem Med Chem. 2016;11:2682–2689.
  • Austin CJD, Mizdrak J, Matin A, et al. Optimised expression and purification of recombinant human indoleamine 2,3-dioxygenase. Protein Expres Purif. 2004;37:392–398.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.