5,462
Views
25
CrossRef citations to date
0
Altmetric
REVIEW ARTICLE

Phage-displayed peptides targeting specific tissues and organs

ORCID Icon, , ORCID Icon & ORCID Icon
Pages 555-565 | Received 14 Jun 2018, Accepted 28 Sep 2018, Published online: 24 Oct 2018

References

  • Couvreur P. Nanoparticles in drug delivery: past, present and future. Adv Drug Deliv Rev. 2013;65:21–23.
  • Meng H, Leong W, Leong KW. Walking the line: The fate of nanomaterials at biological barriers. Biomaterials. 2018;174:41–53.
  • Ruoslahti E. Peptides as targeting elements and tissue penetration devices for nanoparticles. Adv Mater. 2012;24:3747–3756.
  • Lajoie JM, Shusta EV. Targeting receptor-mediated transport for delivery of biologics across the blood-brain barrier. Annu Rev Pharmacol Toxicol. 2015;55:613–631.
  • Ramsey JD, Flynn NH. Cell penetrating peptides transport therapeutics into cells. Pharmacol Ther. 2015;154:78–86.
  • Smith GP, Petrenko VA. Phage display. Chem Rev. 1997;97:391–410.
  • Lau SK, Prakash S, Geller SA, et al. Comparative immunohistochemical profile of hepatocellular carcinoma, cholangiocarcinoma, and metastatic adenocarcinoma. Human Pathol. 2002;33:1175–1181.
  • Saiki Y, Horii A. Molecular pathology of pancreatic cancer. Pathol Int. 2014;64:10–19.
  • Hirose Y, Sasaki H, Abe M, et al. Subgrouping of gliomas on the bases of genetic profiles. Brain Tumor Pathol. 2013;30:203–208.
  • Babickova J, Tothova L, Boor P, et al. In vivo phage display – a discovery tool in molecular biomedicine. Biotechnol Adv. 2013;31:1247–1259.
  • Petrenko VA. Autonomous self-navigating drug-delivery vehicles: from science fiction to reality. Therap Deliv. 2017;8:1063–1075.
  • Balestrieri ML, Napoli C. Novel challenges in exploring peptide ligands and corresponding tissue-specific endothelial receptors. Eur J Cancer. 2007;43:1242–1250.
  • Hajitou A, Pasqualini R, Arap W. Vascular targeting: recent advances and therapeutic perspectives. Trends Cardiovasc Med. 2006;16:80–88.
  • Pasqualini R, Moeller BJ, Arap W. Leveraging molecular heterogeneity of the vascular endothelium for targeted drug delivery and imaging. Semin Thromb Hemost. 2010;36:343–351.
  • Teesalu T, Sugahara KN, Ruoslahti E. Mapping of vascular ZIP codes by phage display. Methods Enzymol. 2012;503:35–56.
  • Trepel M, Arap W, Pasqualini R. In vivo phage display and vascular heterogeneity: implications for targeted medicine. Curr Opin Chem Biol. 2002;6:399–404.
  • Narayanaswamy R, Wang T, P. Torchilin V. Improving peptide applications using nanotechnology. Curr Top Med Chem. 2016;16:253–270.
  • Petrenko VA. Landscape phage: evolution from phage display to nanobiotechnology. Viruses. 2018;10(6):311.
  • Müller OJ, Kaul F, Weitzman MD, et al. Random peptide libraries displayed on adeno-associated virus to select for targeted gene therapy vectors. Nat Biotechnol. 2003;21:1040–1046.
  • Nixon AE, Sexton DJ, Ladner RC. Drugs derived from phage display: from candidate identification to clinical practice. mAbs. 2014;6:73–85.
  • Namdee K, Carrasco-Teja M, Fish MB, et al. Effect of variation in hemorheology between human and animal blood on the binding efficacy of vascular-targeted carriers. Sci Rep. 2015;5:11631.
  • Jucker M. The benefits and limitations of animal models for translational research in neurodegenerative diseases. Nat Med. 2010;16:1210–1214.
  • Bakhshinejad B, Zade HM, Shekarabi HS, et al. Phage display biopanning and isolation of target-unrelated peptides: in search of nonspecific binders hidden in a combinatorial library. Amino Acids. 2016;48:2699–2716.
  • Menendez A, Scott JK. The nature of target-unrelated peptides recovered in the screening of phage-displayed random peptide libraries with antibodies. Anal Biochem. 2005;336:145–157.
  • Vodnik M, Zager U, Strukelj B, et al. Phage display: selecting straws instead of a needle from a haystack. Molecules. 2011;16:790–817.
  • Zade HM, Keshavarz R, Shekarabi HSZ, et al. Biased selection of propagation-related TUPs from phage display peptide libraries. Amino Acids. 2017;49:1293–1308.
  • He B, Chai G, Duan Y, et al. BDB: biopanning data bank. Nucleic Acids Res. 2016;44:D1127–D1132.
  • Lee JH, Engler JA, Collawn JF, et al. Receptor mediated uptake of peptides that bind the human transferrin receptor. Eur J Biochem. 2001;268:2004–2012.
  • Brammer LA, Bolduc B, Kass JL, et al. A target-unrelated peptide in an M13 phage display library traced to an advantageous mutation in the gene II ribosome-binding site. Anal Biochem. 2008;373:88–98.
  • Wilhelm S, Tavares AJ, Dai Q, et al. Analysis of nanoparticle delivery to tumours [Perspective]. Nature Rev Materials. 2016;1:16014.
  • Albanese A, Tang PS, Chan WC. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng. 2012;14:1–16.
  • Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol. 2015;33:941–951.
  • Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nat Mater. 2013;12:991–1003.
  • Anselmo AC, Mitragotri S. Nanoparticles in the clinic. Bioeng Transl Med. 2016;1:10–29.
  • Chung EJ. Targeting and therapeutic peptides in nanomedicine for atherosclerosis. Exp Biol Med (Maywood). 2016;241:891–898.
  • Boisguerin P. Giorgi JM, Barrere-Lemaire S. CPP-conjugated anti-apoptotic peptides as therapeutic tools of ischemia-reperfusion injuries. Curr Pharm Design. 2013;19:2970–2978.
  • Nicklin SA, White SJ, Watkins SJ, et al. Selective targeting of gene transfer to vascular endothelial cells by use of peptides isolated by phage display. Circulation. 2000;102:231–237.
  • White SJ, Nicklin SA, Sawamura T, et al. Identification of peptides that target the endothelial cell-specific LOX-1 receptor. Hypertension. 2001;37:449–455.
  • Michon IN, Hauer AD, von der TJH, et al. Targeting of peptides to restenotic vascular smooth muscle cells using phage display in vitro and in vivo. Biochim Biophys Acta. 2002;1591:87–97.
  • Yang M, Liu C, Niu M, et al. Phage-display library biopanning and bioinformatic analysis yielded a high-affinity peptide to inflamed vascular endothelium both in vitro and in vivo. J Control Release. 2014;174:72–80.
  • Nahrendorf M, Keliher E, Panizzi P, et al. 18F-4V for PET-CT imaging of VCAM-1 expression in atherosclerosis. JACC Cardiovasc Imag. 2009;2:1213–1222.
  • Kuo CH, Leon L, Chung EJ, et al. Inhibition of atherosclerosis-promoting microRNAs via targeted polyelectrolyte complex micelles. J Mater Biol Med. 2014;2:8142–8153.
  • Hong HY, Lee HY, Kwak W, et al. Phage display selection of peptides that home to atherosclerotic plaques: IL-4 receptor as a candidate target in atherosclerosis. J Cell Mol Med. 2008;12:2003–2014.
  • Park K, Hong HY, Moon HJ, et al. A new atherosclerotic lesion probe based on hydrophobically modified chitosan nanoparticles functionalized by the atherosclerotic plaque targeted peptides. J Control Release. 2008;128:217–223.
  • Lee GY, Kim JH, Oh GT, et al. Molecular targeting of atherosclerotic plaques by a stabilin-2-specific peptide ligand. J Control Release. 2011;155:211–217.
  • Thapa N, Hong HY, Sangeetha P, et al. Identification of a peptide ligand recognizing dysfunctional endothelial cells for targeting atherosclerosis. J Control Release. 2008;131:27–33.
  • Hardy B, Raiter A, Weiss C, et al. Angiogenesis induced by novel peptides selected from a phage display library by screening human vascular endothelial cells under different physiological conditions. Peptides. 2007;28:691–701.
  • Hardy B, Battler A, Weiss C, et al. Therapeutic angiogenesis of mouse hind limb ischemia by novel peptide activating GRP78 receptor on endothelial cells. Biochem Pharmacol. 2008;75:891–899.
  • Raiter A, Weiss C, Bechor Z, et al. Activation of GRP78 on endothelial cell membranes by an ADAM15-derived peptide induces angiogenesis. J Vasc Res. 2010;47:399–411.
  • Kanki S, Jaalouk DE, Lee S, et al. Identification of targeting peptides for ischemic myocardium by in vivo phage display. J Mol Cell Cardiol. 2011;50:841–848.
  • Nicol CG, Denby L, Lopez-Franco O, et al. Use of in vivo phage display to engineer novel adenoviruses for targeted delivery to the cardiac vasculature. FEBS Lett. 2009;583:2100–2107.
  • Zhang L, Hoffman JA, Ruoslahti E. Molecular profiling of heart endothelial cells. Circulation. 2005;112:1601–1611.
  • Greig JA, Shirley R, Graham D, et al. Vascular-targeting antioxidant therapy in a model of hypertension and stroke. J Cardiovasc Pharmacol. 2010;56:642–650.
  • Kolonin MG, Sun J, Do KA, et al. Synchronous selection of homing peptides for multiple tissues by in vivo phage display. FASEB J. 2006;20:979–981.
  • Rajotte D, Arap W, Hagedorn M, et al. Molecular heterogeneity of the vascular endothelium revealed by in vivo phage display. J Clin Invest. 1998;102:430–437.
  • Samli KN, McGuire MJ, Newgard CB, et al. Peptide-mediated targeting of the islets of Langerhans. Diabetes. 2005;54:2103–2108.
  • Yao VJ, Ozawa MG, Trepel M, et al. Targeting pancreatic islets with phage display assisted by laser pressure catapult microdissection. Am J Pathol. 2005;166:625–636.
  • Blevins KS, Jeong JH, Ou M, et al. EphA2 targeting peptide tethered bioreducible poly(cystamine bisacrylamide-diamino hexane) for the delivery of therapeutic pCMV-RAE-1gamma to pancreatic islets. J Control Release. 2012;158:115–122.
  • Ghosh K, Kanapathipillai M, Korin N, et al. Polymeric nanomaterials for islet targeting and immunotherapeutic delivery. Nano Lett. 2012;12:203–208.
  • Joo WS, Jeong JH, Nam K, et al. Polymeric delivery of therapeutic RAE-1 plasmid to the pancreatic islets for the prevention of type 1 diabetes. J Control Release. 2012;162:606–611.
  • Kim MJ, Yu JH, Oh MH, et al. Development of fluorescence-conjugated islet-homing peptide using biopanning for targeted optical imaging of pancreatic islet. J Ind Eng Chem. 2017;45:404–411.
  • Ueberberg S, Schneider S. Phage library-screening: a powerful approach for generation of targeting-agents specific for normal pancreatic islet-cells and islet-cell carcinoma in vivo. Regul Peptides. 2010;160:1–8.
  • Pasqualini R, Ruoslahti E. Organ targeting in vivo using phage display peptide libraries. Nature. 1996;380:364–366.
  • Odermatt A, Audige A, Frick C, et al. Identification of receptor ligands by screening phage-display peptide libraries ex vivo on microdissected kidney tubules. J Am Soc Nephrol. 2001;12:308–316.
  • Audige A, Frick C, Frey FJ, et al. Selection of peptide ligands binding to the basolateral cell surface of proximal convoluted tubules. Kidney Int. 2002;61:342–348.
  • Denby L, Work LM, Seggern DJ, et al. Development of renal-targeted vectors through combined in vivo phage display and capsid engineering of adenoviral fibers from serotype 19p. Mol Ther. 2007;15:1647–1654.
  • Geng Q, Sun X, Gong T, et al. Peptide-drug conjugate linked via a disulfide bond for kidney targeted drug delivery. Bioconjugate Chem. 2012;23:1200–1210.
  • Xia H, Anderson B, Mao Q, et al. Recombinant human adenovirus: targeting to the human transferrin receptor improves gene transfer to brain microcapillary endothelium. J Virol. 2000;74:11359–11366.
  • Martin I, Dohmen C, Mas-Moruno C, et al. Solid-phase-assisted synthesis of targeting peptide-PEG-oligo(ethane amino)amides for receptor-mediated gene delivery. Org Biomol Chem. 2012;10:3258–3268.
  • Kos P, Lachelt U, He D, et al. Dual-targeted polyplexes based on sequence-defined peptide-PEG-oligoamino amides. J Pharm Sci. 2015;104:464–475.
  • Han L, Huang R, Liu S, et al. Peptide-conjugated PAMAM for targeted doxorubicin delivery to transferrin receptor overexpressed tumors. Mol Pharm. 2010;7:2156–2165.
  • Wang Z, Zhao Y, Jiang Y, et al. Enhanced anti-ischemic stroke of ZL006 by T7-conjugated PEGylated liposomes drug delivery system. Sci Rep. 2015;5:12651.
  • Xie Y, Killinger B, Moszczynska A, et al. Targeted delivery of siRNA to transferrin receptor overexpressing tumor cells via peptide modified polyethylenimine. Molecules. 2016;21:1334.
  • Zhao Y, Jiang Y, Lv W, et al. Dual targeted nanocarrier for brain ischemic stroke treatment. J Control Release. 2016;233:64–71.
  • Wangler C, Nada D, Hofner G, et al. In vitro and initial in vivo evaluation of (68)Ga-labeled transferrin receptor (TfR) binding peptides as potential carriers for enhanced drug transport into TfR expressing cells. Mol Imaging Biol. 2011;13:332–341.
  • Prades R, Guerrero S, Araya E, et al. Delivery of gold nanoparticles to the brain by conjugation with a peptide that recognizes the transferrin receptor. Biomaterials. 2012;33:7194–7205.
  • Mu LM, Bu YZ, Liu L, et al. Lipid vesicles containing transferrin receptor binding peptide TfR-T12 and octa-arginine conjugate stearyl-R8 efficiently treat brain glioma along with glioma stem cells. Sci Rep. 2017;7:3487.
  • Liu JK, Teng Q, Garrity-Moses M, et al. A novel peptide defined through phage display for therapeutic protein and vector neuronal targeting. Neurobiol Dis. 2005;19:407–418.
  • Park IK, Lasiene J, Chou SH, et al. Neuron-specific delivery of nucleic acids mediated by Tet1-modified poly(ethylenimine). J Gene Med. 2007;9:691–702.
  • Kwon EJ, Bergen JM, Park IK, et al. Peptide-modified vectors for nucleic acid delivery to neurons. J Control Release. 2008;132:230–235.
  • Zhang Y, Zhang W, Johnston AH, et al. Targeted delivery of Tet1 peptide functionalized polymersomes to the rat cochlear nerve. Int J Nanomed. 2012;7:1015–1022.
  • Fan X, Venegas R, Fey R, et al. An in vivo approach to structure activity relationship analysis of peptide ligands. Pharm Res. 2007;24:868–879.
  • Toome K, Willmore AA, Paiste P, et al. Ratiometric in vivo auditioning of targeted silver nanoparticles. Nanoscale. 2017;9:10094–10100.
  • Hong HY, Choi JS, Kim YJ, et al. Detection of apoptosis in a rat model of focal cerebral ischemia using a homing peptide selected from in vivo phage display. J Control Release. 2008;131:167–172.
  • van Groen T, Wiesehan K, Funke SA, et al. Reduction of Alzheimer's disease amyloid plaque load in transgenic mice by D3, A D-enantiomeric peptide identified by mirror image phage display. Chem Med Chem. 2008;3:1848–1852.
  • van Groen T, Kadish I, Wiesehan K, et al. In vitro and in vivo staining characteristics of small, fluorescent, Abeta42-binding D-enantiomeric peptides in transgenic AD mouse models. Chem Med Chem. 2009;4:276–282.
  • Lu S, Xu X, Zhao W, et al. Targeting of embryonic stem cells by peptide-conjugated quantum dots. PLoS One. 2010;5:e12075.
  • Jiang N, Frenzel D, Schartmann E, et al. Blood-brain barrier penetration of an Abeta-targeted, arginine-rich, d-enantiomeric peptide. Biochim Biophys Acta. 2016;58:2717–2724.
  • Wan XM, Chen YP, Xu WR, et al. Identification of nose-to-brain homing peptide through phage display. Peptides. 2009;30:343–350.
  • van Rooy I, Cakir-Tascioglu S, Couraud PO, et al. Identification of peptide ligands for targeting to the blood-brain barrier. Pharm Res. 2010;27:673–682.
  • van Rooy I, Hennink WE, Storm G, et al. Attaching the phage display-selected GLA peptide to liposomes: factors influencing target binding. Eur J Pharm Sci. 2012;45:330–335.
  • Li J, Feng L, Fan L, et al. Targeting the brain with PEG-PLGA nanoparticles modified with phage-displayed peptides. Biomaterials. 2011;32:4943–4950.
  • Qian Y, Zha Y, Feng B, et al. PEGylated poly(2-(dimethylamino) ethyl methacrylate)/DNA polyplex micelles decorated with phage-displayed TGN peptide for brain-targeted gene delivery. Biomaterials. 2013;34:2117–2129.
  • Zhang C, Wan X, Zheng X, et al. Dual-functional nanoparticles targeting amyloid plaques in the brains of Alzheimer's disease mice. Biomaterials. 2014;35:456–465.
  • Staquicini FI, Ozawa MG, Moya CA, et al. Systemic combinatorial peptide selection yields a non-canonical iron-mimicry mechanism for targeting tumors in a mouse model of human glioblastoma. J Clin Invest. 2011;121:161–173.
  • Zhang C, Liu Q, Shao X, et al. Phage-displayed peptide-conjugated biodegradable nanoparticles enhanced brain drug delivery. Mater Lett. 2016;167:213–217.
  • Li J, Zhang Q, Pang Z, et al. Identification of peptide sequences that target to the brain using in vivo phage display. Amino Acids. 2012;42:2373–2381.
  • Smith MW, Al-Jayyoussi G, Gumbleton M. Peptide sequences mediating tropism to intact blood-brain barrier: an in vivo biodistribution study using phage display. Peptides. 2012;38:172–180.
  • Malcor JD, Payrot N, David M, et al. Chemical optimization of new ligands of the low-density lipoprotein receptor as potential vectors for central nervous system targeting. J Med Chem. 2012;55:2227–2241.
  • Chen C, Duan Z, Yuan Y, et al. Peptide-22 and cyclic RGD functionalized liposomes for glioma targeting drug delivery overcoming BBB and BBTB. ACS Appl Mater Interf. 2017;9:5864–5873.
  • Molino Y, David M, Varini K, et al. Use of LDL receptor-targeting peptide vectors for in vitro and in vivo cargo transport across the blood-brain barrier. FASEB J. 2017;31:1807–1827.
  • Li J, Feng L, Jiang X. In vivo phage display screen for peptide sequences that cross the blood-cerebrospinal-fluid barrier. Amino Acids. 2015;47:401–405.
  • Urich E, Schmucki R, Ruderisch N, et al. Cargo delivery into the brain by in vivo identified transport peptides. Sci Rep. 2015;5:14104.
  • Mann AP, Scodeller P, Hussain S, et al. A peptide for targeted, systemic delivery of imaging and therapeutic compounds into acute brain injuries. Nat Commun. 2016;7:11980.
  • Diaz-Perlas C, Sanchez-Navarro M, Oller-Salvia B, et al. Phage display as a tool to discover blood-brain barrier (BBB)-shuttle peptides: panning against a human BBB cellular model. Peptide Sci. 2017;108:e22928.
  • Li J, Zhang C, Li J, et al. Brain delivery of NAP with PEG-PLGA nanoparticles modified with phage display peptides. Pharm Res. 2013;30:1813–1823.
  • Baird A, Eliceiri BP, Gonzalez AM, et al. Targeting the choroid plexus-CSF-brain nexus using peptides identified by phage display. Methods Mol Biol. 2011;686:483–498.
  • Rajotte D, Ruoslahti E. Membrane dipeptidase is the receptor for a lung-targeting peptide identified by in vivo phage display. J Biol Chem. 1999;274:11593–11598.
  • Akerman ME, Chan WC, Laakkonen P, et al. Nanocrystal targeting in vivo. Proc Natl Acad Sci USA. 2002;99:12617–12621.
  • Yan Z, Lu L, Shi J, et al. Expression, refolding, and characterization of GFE peptide-fused human interferon-alpha2a in Escherichia coli. Appl Biochem Biotechnol. 2006;133:149–162.
  • Wu M, Pasula R, Smith PA, et al. Mapping alveolar binding sites in vivo using phage peptide libraries. Gene Ther. 2003;10:1429–1436.
  • Work LM, Buning H, Hunt E, et al. Vascular bed-targeted in vivo gene delivery using tropism-modified adeno-associated viruses. Mol Therapy. 2006;13:683–693.
  • Morris CJ, Smith MW, Griffiths PC, et al. Enhanced pulmonary absorption of a macromolecule through coupling to a sequence-specific phage display-derived peptide. J Control Release. 2011;151:83–94.
  • Park S, Kim YJ, Jon S. A high-affinity peptide for nicotinic acetylcholine receptor-alpha1 and its potential use in pulmonary drug delivery. J Control Release. 2014;192:141–147.
  • Higgins LM, Lambkin I, Donnelly G, et al. In vivo phage display to identify M cell-targeting ligands. Pharm Res. 2004;21:695–705.
  • Duerr DM, White SJ, Schluesener HJ. Identification of peptide sequences that induce the transport of phage across the gastrointestinal mucosal barrier. J Virol Methods. 2004;116:177–180.
  • Takagi T, Arisawa T, Yamamoto K, et al. Identification of ligands binding specifically to inflammatory intestinal mucosa using phage display. Clin Exp Pharm Physiol. 2007;34:286–289.
  • Kang SK, Woo JH, Kim MK, et al. Identification of a peptide sequence that improves transport of macromolecules across the intestinal mucosal barrier targeting goblet cells. J Biotechnol. 2008;135:210–216.
  • Yoo MK, Kang SK, Choi JH, et al. Targeted delivery of chitosan nanoparticles to Peyer's patch using M cell-homing peptide selected by phage display technique. Biomaterials. 2010;31:7738–7747.
  • Lee JY, Kang SK, Li HS, et al. Production of recombinant human growth hormone conjugated with a transcytotic peptide in Pichia pastoris for effective oral protein delivery. Mol Biotechnol. 2015;57:430–438.
  • Fievez V, Plapied L, Plaideau C, et al. In vitro identification of targeting ligands of human M cells by phage display. Int J Pharm. 2010;394:35–42.
  • Costantini TW, Eliceiri BP, Putnam JG, et al. Intravenous phage display identifies peptide sequences that target the burn-injured intestine. Peptides. 2012;38:94–99.
  • Kenngott EE, Cole S, Hein WR, et al. Identification of targeting peptides for mucosal delivery in sheep and mice. Mol Pharm. 2016;13:202–210.
  • Lambkin I, Pinilla C. Targeting approaches to oral drug delivery. Expert Opin Biol Therapy. 2002;2:67–73.
  • Yun Y, Cho YW, Park K. Nanoparticles for oral delivery: targeted nanoparticles with peptidic ligands for oral protein delivery. Adv Drug Deliv Rev. 2013;65:822–832.
  • Hamzeh-Mivehroud M, Mahmoudpour A, Rezazadeh H, et al. Non-specific translocation of peptide-displaying bacteriophage particles across the gastrointestinal barrier. Eur J Pharm Biopharm. 2008;70:577–581.
  • Rothenfluh DA, Bermudez H, O’Neil CP, et al. Biofunctional polymer nanoparticles for intra-articular targeting and retention in cartilage. Nature Mater. 2008;7:248–254.
  • Surovtseva EV, Johnston AH, Zhang W, et al. Prestin binding peptides as ligands for targeted polymersome mediated drug delivery to outer hair cells in the inner ear. Int J Pharm. 2012;424:121–127.
  • Essler M, Ruoslahti E. Molecular specialization of breast vasculature: a breast-homing phage-displayed peptide binds to aminopeptidase P in breast vasculature. Proc Natl Acad Sci USA. 2002;99:2252–2257.
  • Arap W, Haedicke W, Bernasconi M, et al. Targeting the prostate for destruction through a vascular address. Proc Natl Acad Sci U S A. 2002;99:1527–1531.
  • McGuire MJ, Sykes KF, Samli KN, et al. A library-selected, Langerhans cell-targeting peptide enhances an immune response. DNA Cell Biol. 2004;23:742–752.
  • Kolonin MG, Saha PK, Chan L, et al. Reversal of obesity by targeted ablation of adipose tissue. Nat Med. 2004;10:625–632.
  • Jarvinen TA, Ruoslahti E. Molecular changes in the vasculature of injured tissues. Am J Pathol. 2007;171:702–711.
  • Yang Y, Zizheng W, Tongxin D. Mouse thymus targeted peptide isolated by in vivo phage display can inhibit bioactivity of thymus output in vivo. J Biomol Screen. 2008;13:968–974.
  • Staniszewska M, Gu X, Romano C, et al. A phage display-based approach to investigate abnormal neovessels of the retina. Invest Ophthalmol Vis Sci. 2012;53:4371–4379.
  • Samoylova TI, Smith BF. Elucidation of muscle-binding peptides by phage display screening. Muscle Nerve. 1999;22:460–466.