418
Views
7
CrossRef citations to date
0
Altmetric
Review Article

Heme metabolism as a therapeutic target against protozoan parasites

ORCID Icon, ORCID Icon & ORCID Icon
Pages 767-779 | Received 14 Aug 2018, Accepted 13 Oct 2018, Published online: 31 Oct 2018

References

  • Hotez PJ, Alvarado M, Basáñez M-G. The global burden of disease study 2010: interpretation and implications for the neglected tropical diseases. PLoS Negl Trop Dis. 2014;8:e2865.
  • Lozano R, Naghavi M, Foreman K. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380:2095–2128.
  • Hotez PJ, Molyneux DH, Fenwick A, et al. Control of neglected tropical diseases. N Engl J Med. 2007;357:1018–1027.
  • Røttingen J-A, Regmi S, Eide M, et al. Mapping of available health research and development data: what's there, what's missing, and what role is there for a global observatory?. Lancet. 2013;382:1286–1307.
  • Pedrique B, Strub-Wourgaft N, Some C, et al. The drug and vaccine landscape for neglected diseases (2000–11): a systematic assessment. Lancet Glob Heal. 2013;1:e371–e379.
  • Bhutta ZA, Sommerfeld J, Lassi ZS, et al. Global burden, distribution, and interventions for infectious diseases of poverty. Infect Dis Poverty. 2014;3:21.
  • Nwaka S, Hudson A. Innovative lead discovery strategies for tropical diseases. Nat Rev Drug Discov. 2006;5:941–955.
  • Renslo AR, McKerrow JH. Drug discovery and development for neglected parasitic diseases. Nat Chem Biol. 2006;2:701–710.
  • Pink R, Hudson A, Mouriès M-A, et al. Opportunities and challenges in antiparasitic drug discovery. Nat Rev Drug Discov. 2005;4:727–740.
  • Gilbert IH. Drug discovery for neglected diseases: molecular target-based and phenotypic approaches. J Med Chem. 2013;56:7719–7726.
  • Gorka AP, de Dios A, Roepe PD. Quinoline drug-heme interactions and implications for antimalarial cytostatic versus cytocidal activities. J Med Chem. 2013;56:5231–5246.
  • Choi JY, Calvet CM, Gunatilleke SS, et al. Rational development of 4-aminopyridyl-based inhibitors targeting Trypanosoma cruzi CYP51 as anti-chagas agents. J Med Chem. 2013;56:7651–7668.
  • Pamplona A, Ferreira A, Balla J, et al. Heme oxygenase-1 and carbon monoxide suppress the pathogenesis of experimental cerebral malaria. Nat Med. 2007;13:703–710.
  • Harris F, Pierpoint L. Photodynamic therapy based on 5-aminolevulinic acid and its use as an antimicrobial agent. Med Res Rev. 2012;32:1292–1327.
  • Ponka P. Cell biology of heme. Am J Med Sci. 1999;318:241–256.
  • Kořený L, Oborník M, Lukeš J. Make it, take it, or leave it: heme metabolism of parasites. PLoS Pathog. 2013;9:e1003088.
  • Toh SQ, Glanfield A, Gobert GN, et al. Heme and blood-feeding parasites: friends or foes? Parasit Vectors. 2010;3:108.
  • Tripodi KE, Menendez Bravo SM, Cricco JA. Role of heme and heme-proteins in trypanosomatid essential metabolic pathways. Enzyme Res. 2011;2011:1.
  • Bonday ZQ, Dhanasekaran S, Rangarajan PN, et al. Import of host delta-aminolevulinate dehydratase into the malarial parasite: identification of a new drug target. Nat Med. 2000;6:898–903.
  • Sigala P. a, Goldberg DE. The peculiarities and paradoxes of plasmodium heme metabolism. Annu Rev Microbiol. 2014;68:259–278.
  • Kehrer JP. The Haber-Weiss reaction and mechanisms of toxicity. Toxicology. 2000;149:43–50.
  • Vincent SH. Oxidative effects of heme and porphyrins on proteins and lipids. Semin Hematol. 1989;26:105–113.
  • Ajioka RS, Phillips JD, Kushner JP. Biosynthesis of heme in mammals. Biochim Biophys Acta. 2006;1763:723–736.
  • Khan AA, Quigley JG. Control of intracellular heme levels: heme transporters and heme oxygenases. Biochim Biophys Acta. 2011;1813:668–682.
  • Padmanaban G, Rangarajan PN. Heme metabolism of plasmodium is a major antimalarial target. Biochem Biophys Res Commun. 2000;268:665–668.
  • Huynh C, Yuan X, Miguel DC, et al. Heme uptake by Leishmania amazonensis is mediated by the transmembrane protein LHR1. PLoS Pathog. 2012;8:e1002795.
  • Miguel DC, Flannery AR, Mittra B, et al. Heme uptake mediated by lhr1 is essential for Leishmania amazonensis virulence. Infect Immun. 2013;81:3620–3626.
  • Nielsen MJ, Moestrup SK. Receptor targeting of hemoglobin mediated by the haptoglobins: roles beyond heme scavenging. Blood. 2009;114:764–771.
  • Vanhollebeke B, De Muylder G, Nielsen MJ, et al. A haptoglobin-hemoglobin receptor conveys innate immunity to Trypanosoma brucei in humans. Science. 2008;320:677–681.
  • Bishop JR, Shimamura M, Hajduk SL. Insight into the mechanism of trypanosome lytic factor-1 killing of Trypanosoma brucei brucei. Mol Biochem Parasitol. 2001;118:33–40.
  • Uzureau P, Uzureau S, Lecordier L, et al. Mechanism of Trypanosoma brucei gambiense resistance to human serum. Nature. 2013;501:430–434.
  • Dauchy F-A, Bonhivers M, Landrein N, et al. Trypanosoma brucei CYP51: essentiality and targeting therapy in an experimental model. PLoS Negl Trop Dis. 2016;10:e0005125.
  • Krishnamurthy P, Xie T, Schuetz JD. The role of transporters in cellular heme and porphyrin homeostasis. Pharmacol Ther. 2007;114:345–358.
  • Vasiliou V, Vasiliou K, Nebert DW. Human ATP-binding cassette (ABC) transporter family. Hum Genomics. 2009;3:281–290.
  • Campos-Salinas J, Cabello-Donayre M, García-Hernández R, et al. A new ATP-binding cassette protein is involved in intracellular haem trafficking in Leishmania. Mol Microbiol. 2011;79:1430–1444.
  • Martínez-García M, Campos-Salinas J, Cabello-Donayre M, et al. LmABCB3, an atypical mitochondrial ABC transporter essential for Leishmania major virulence, acts in heme and cytosolic iron/sulfur clusters biogenesis. Parasit Vectors. 2016;9:7.
  • Cabello-Donayre M, Malagarie-Cazenave S, Campos-Salinas J, et al. Trypanosomatid parasites rescue heme from endocytosed hemoglobin through lysosomal HRG transporters. Mol Microbiol. 2016;101:895–908.
  • Cupello MP, Souza CF, Buchensky C, et al. The heme uptake process in Trypanosoma cruzi epimastigotes is inhibited by heme analogues and by inhibitors of ABC transporters. Acta Trop. 2011;120:211–218.
  • Merli ML, Pagura L, Hernández J, et al. The Trypanosoma cruzi protein TcHTE is critical for heme uptake. PLoS Negl Trop Dis. 2016;10:e0004359.
  • Owens CP, Chim N, Goulding CW. Insights on how the Mycobacterium tuberculosis heme uptake pathway can be used as a drug target. Future Med Chem. 2013;5:1391–1403.
  • Warren MJ. In black and white the colours of life—an introduction to the chemistry of porphyrins and related compounds. Trends Biochem Sci. 1997;22:409–410.
  • Vanderesse R, Colombeau L, Frochot C, et al. Inactivation of malaria parasites in blood: PDT vs inhibition of hemozoin formation. In: Rodriguez-Morales AJ, editor. Current topics in malaria. Rijeka: InTech; 2016. p. 217–221.
  • Cole KA, Ziegler J, Evans CA, et al. Metalloporphyrins inhibit beta-hematin (hemozoin) formation. J Inorg Biochem. 2000;78:109–115.
  • Begum K, Kim H-S, Kumar V, et al. In vitro antimalarial activity of metalloporphyrins against Plasmodium falciparum. Parasitol Res. 2003;90:221–224.
  • Abada Z, Cojean S, Pomel S, et al. Synthesis and antiprotozoal activity of original porphyrin precursors and derivatives. Eur J Med Chem. 2013;67:158–165.
  • Alves E, Iglesias BA, Deda DK, et al. Encapsulation of metalloporphyrins improves their capacity to block the viability of the human malaria parasite Plasmodium falciparum. Nanomedicine. 2015;11:351–358.
  • Nyarko E, Hara T, Grab DJ, et al. In vitro toxicity of palladium(II) and gold(III) porphyrins and their aqueous metal ion counterparts on Trypanosoma brucei brucei growth. Chem Biol Interact. 2004;148:19–25.
  • Gomes ML, DeFreitas-Silva G, dos Reis PG, et al. Synthesis and characterization of bismuth(III) and antimony(V) porphyrins: high antileishmanial activity against antimony-resistant parasite. J Biol Inorg Chem. 2015;20:771–779.
  • Fan W, Huang P, Chen X. Overcoming the Achilles' heel of photodynamic therapy. Chem Soc Rev. 2016;45:6488–6519.
  • Juarranz Á, Jaén P, Sanz-Rodríguez F, et al. Photodynamic therapy of cancer. Basic principles and applications. Clin Transl Oncol. 2008;10:148–154.
  • Fukuda H, Casas A, Chueke F, et al. Photodynamic action of endogenously synthesized porphyrins from aminolevulinic acid, using a new model for assaying the effectiveness of tumoral cell killing. Int J Biochem. 1993;25:1395–1398.
  • Robertson CA, Evans DH, Abrahamse H. Photodynamic therapy (PDT): a short review on cellular mechanisms and cancer research applications for PDT. J Photochem Photobiol B. 2009;96:1–8.
  • Hryhorenko EA, Oseroff AR, Morgan J, et al. Antigen specific and nonspecific modulation of the immune response by aminolevulinic acid based photodynamic therapy. Immunopharmacology. 1998;40:231–240.
  • Baptista MS, Wainwright M. Photodynamic antimicrobial chemotherapy (PACT) for the treatment of malaria, leishmaniasis and trypanosomiasis. Braz J Med Biol Res. 2011;44:1–10.
  • Szeimies R-M, Morton CA, Sidoroff A, et al. Photodynamic therapy for non-melanoma skin cancer. Acta Derm Venereol. 2005;85:483–490.
  • Davids LM, Kleemann B. Combating melanoma: the use of photodynamic therapy as a novel, adjuvant therapeutic tool. Cancer Treat Rev. 2011;37:465–475.
  • Simone CB, Cengel KA. Photodynamic therapy for lung cancer and malignant pleural mesothelioma. Semin Oncol. 2014;41:820–830.
  • Kawczyk-Krupka A, Bugaj AM, Latos W, et al. Photodynamic therapy in colorectal cancer treatment- the state of the art in clinical trials. Photodiagnosis Photodyn Ther. 2015;12:545–553.
  • Shimao H, Hiki Y. Photodynamic therapy for esophageal cancer. Gan to Kagaku Ryoho. 1996;23:36–40.
  • Uzdensky AB, Berezhnaya E, Kovaleva V, et al. Photodynamic therapy: a review of applications in neurooncology and neuropathology. J Biomed Opt. 2015;20:61108.
  • Kharkwal GB, Sharma SK, Huang YY, et al. Photodynamic therapy for infections: clinical applications. Lasers Surg Med. 2011;43:755–767.
  • Lyon JP, Moreira LM, PCG d. M, et al. Photodynamic therapy for pathogenic fungi. Mycoses. 2011;54:e265–e271.
  • Gardlo K, Horska Z, Enk CD, et al. Treatment of cutaneous leishmaniasis by photodynamic therapy. J Am Acad Dermatol. 2003;48:893–896.
  • Van Der Snoek EM, Robinson DJ, Van Hellemond JJ, et al. A review of photodynamic therapy in cutaneous leishmaniasis. J Eur Acad Dermatol Venereol. 2008;22:918–922.
  • Asilian A, Davami M. Comparison between the efficacy of photodynamic therapy and topical paromomycin in the treatment of Old World cutaneous leishmaniasis: a placebo-controlled, randomized clinical trial. Clin Exp Dermatol. 2006;31:634–637.
  • Sohl S, Kauer F, Paasch U, et al. Photodynamic treatment of cutaneous leishmaniasis. J Dtsch Dermatol Ges. 2007;5:128–130.
  • Enk CD, Nasereddin A, Alper R, et al. Br J Dermatol. 2015;172:1364–1370.
  • Mateus JE, Valdivieso W, Hernández IP, et al. Cell accumulation and antileishmanial effect of exogenous and endogenous protoporphyrin IX after photodynamic treatment. Biomedica. 2014;34:589–597.
  • Kosaka S, Akilov OE, O'Riordan K, et al. A mechanistic study of δ-aminolevulinic acid-based photodynamic therapy for cutaneous leishmaniasis. J Invest Dermatol. 2007;127:1546–1549.
  • Rose AL, Waite TD. Chemiluminescence of luminol in the presence of iron(II) and oxygen: oxidation mechanism and implications for its analytical use. Anal Chem. 2001;73:5909–5920.
  • Sigala PA, Crowley JR, Henderson JP, et al. Deconvoluting heme biosynthesis to target blood-stage malaria parasites. Elife. 2015;4:e09143.
  • Peloi LS, Biondo CEG, Kimura E, et al. Photodynamic therapy for American cutaneous leishmaniasis: the efficacy of methylene blue in hamsters experimentally infected with Leishmania (Leishmania) amazonensis. Exp Parasitol. 2011;128:353–356.
  • Sbeghen MR, Voltarelli EM, Campois TG, et al. Topical and intradermal efficacy of photodynamic therapy with methylene blue and light-emitting diode in the treatment of cutaneous leishmaniasis caused by Leishmania braziliensis. J Lasers Med Sci. 2015;6:106–111.
  • Wendel S. Transfusion transmitted Chagas disease: is it really under control?. Acta Trop. 2010;115:28–34.
  • Gironés N, Bueno JL, Carrión J, et al. The efficacy of photochemical treatment with methylene blue and light for the reduction of Trypanosoma cruzi in infected plasma. Vox Sang. 2006;91:285–291.
  • Kalkanidis M, Klonis N, Tilley L, et al. Novel phenothiazine antimalarials: synthesis, antimalarial activity, and inhibition of the formation of beta-haematin. Biochem Pharmacol. 2002;63:833–842.
  • Schirmer RH, Coulibaly B, Stich A, et al. Methylene blue as an antimalarial agent. Redox Rep. 2003;8:272–275.
  • Bawa S, Kumar S, Drabu S, et al. Structural modifications of quinoline-based antimalarial agents: recent developments. J Pharm Bioall Sci. 2010;2:64–71.
  • O’Neill PM, Barton VE, Ward SA, et al. 4-Aminoquinolines: chloroquine, amodiaquine and next-generation analogues. Milestones Drug Ther. 2012;41:19–44.
  • Egan TJ. Structure-function relationships in chloroquine and related 4-aminoquinoline antimalarials. Mini Rev Med Chem. 2001;1:113–123.
  • Burgess SJ, Kelly JX, Shomloo S, et al. Synthesis, structure-activity relationship, and mode-of-action studies of antimalarial reversed chloroquine compounds. J Med Chem. 2010;53:6477–6489.
  • Singh K, Kaur H, Smith P, et al. Quinoline-pyrimidine hybrids: synthesis, antiplasmodial activity, SAR, and mode of action studies. J Med Chem. 2014;57:435–448.
  • Kumar S, Bandyopadhyay U. Free heme toxicity and its detoxification systems in human. Toxicol Lett. 2005;157:175–188.
  • Coronado LM, Nadovich CT, Spadafora C. Malarial hemozoin: from target to tool. Biochim Biophys Acta Gen Subj. 2014;1840:2032–2041.
  • Egan TJ. Interactions of quinoline antimalarials with hematin in solution. J Inorg Biochem. 2006;100:916–926.
  • Sander T, Freyss J, Von Korff M, et al. DataWarrior: an open-source program for chemistry aware data visualization and analysis. J Chem Inf Model. 2015;55:460–473.
  • Combrinck JM, Mabotha TE, Ncokazi KK, et al. Insights into the role of heme in the mechanism of action of antimalarials. ACS Chem Biol. 2013;8:133–137.
  • Foley M, Tilley L. Quinoline antimalarials: mechanisms of action and resistance and prospects for new agents. Pharmacol Ther. 1998;79:55–87.
  • Lechuga GC, Borges JC, Calvet CM, et al. Interactions between 4-aminoquinoline and heme: promising mechanism against Trypanosoma cruzi. Int J Parasitol Drugs Drug Resist. 2016;6:154–164.
  • Huy NT, Kamei K, Kondo Y, et al. Effect of antifungal azoles on the heme detoxification system of malarial parasite. J Biochem. 2002;131:437–444.
  • Tiffert T, Ginsburg H, Krugliak M, et al. Potent antimalarial activity of clotrimazole in in vitro cultures of Plasmodium falciparum. Proc Natl Acad Sci USA. 2000;97:331–336.
  • Huy NT, Takano R, Hara S, et al. Enhancement of heme-induced membrane damage by the anti-malarial clotrimazole: the role of colloid-osmotic forces. Biol Pharm Bull. 2004;27:361–365.
  • Ignatushchenko MV, Winter RW, Bächinger HP, et al. Xanthones as antimalarial agents; studies of a possible mode of action. FEBS Lett. 1997;409:67–73.
  • Ignatushchenko MV, Winter RW, Riscoe M. Xanthones as antimalarial agents: stage specificity. Am J Trop Med Hyg. 2000;62:77–81.
  • Riscoe M, Kelly JX, Winter R. Xanthones as antimalarial agents: discovery, mode of action, and optimization. Curr Med Chem. 2005;12:2539–2549.
  • Kelly JX, Winter R, Peyton DH, et al. Optimization of xanthones for antimalarial activity: the 3,6-bis-omega-diethylaminoalkoxyxanthone series. Antimicrob Agents Chemother. 2002;46:144–150.
  • Kelly JX, Ignatushchenko MV, Bouwer HG, et al. Antileishmanial drug development: exploitation of parasite heme dependency. Mol Biochem Parasitol. 2003;126:43–49.
  • Kelly JX, Winter RW, Cornea A, et al. The kinetics of uptake and accumulation of 3,6-bis-omega-diethylamino-amyloxyxanthone by the human malaria parasite Plasmodium falciparum. Mol Biochem Parasitol. 2002;123:47–54.
  • World Health Organization. Guidelines for the treatment of malaria. 2nd ed. Geneva, Switzerland: WHO; 2010.
  • Klayman DL. Qinghaosu (artemisinin): an antimalarial drug from China. Science. 1985;228:1049–1055.
  • Pandey N, Pandey-Rai S. Updates on artemisinin: an insight to mode of actions and strategies for enhanced global production. Protoplasma. 2016;253:15–30.
  • O'Neill PM, Barton VE, Ward SA. The molecular mechanism of action of artemisinin-the debate continues. Molecules. 2010;15:1705–1721.
  • Zhang S, Gerhard GS. Heme activates artemisinin more efficiently than hemin, inorganic iron, or hemoglobin. Bioorg Med Chem. 2008;16:7853–7861.
  • Klonis N, Crespo-Ortiz MP, Bottova I, et al. Artemisinin activity against Plasmodium falciparum requires hemoglobin uptake and digestion. Proc Natl Acad Sci USA. 2011;108:11405–11410.
  • Sen R, Ganguly S, Saha P, et al. Efficacy of artemisinin in experimental visceral leishmaniasis. Int J Antimicrob Agents. 2010;36:43–49.
  • D'Angelo JG, Bordón C, Posner GH, et al. Artemisinin derivatives inhibit Toxoplasma gondii in vitro at multiple steps in the lytic cycle. J Antimicrob Chemother. 2009;63:146–150.
  • Mishina YV, Krishna S, Haynes RK, et al. Artemisinins inhibit Trypanosoma cruzi and Trypanosoma brucei rhodesiense in vitro growth. Antimicrob Agents Chemother. 2007;51:1852–1854.
  • Rodriguez M, Claparols C, Robert A, et al. Alkylation of microperoxidase-11 by the antimalarial drug artemisinin. Chembiochem. 2002;3:1147–1149.
  • Kannan R, Sahal D, Chauhan VS. Heme-artemisinin adducts are crucial mediators of the ability of artemisinin to inhibit heme polymerization. Chem Biol. 2002;9:321–332.
  • Loup C, Lelièvre J, Benoit-Vical F, et al. Trioxaquines and heme-artemisinin adducts inhibit the in vitro formation of hemozoin better than chloroquine. Antimicrob Agents Chemother. 2007;51:3768–3770.
  • Kannan R, Kumar K, Sahal D, et al. Reaction of artemisinin with haemoglobin: implications for antimalarial activity. Biochem J. 2005;385:409–418.
  • Robert A, Benoit-Vical F, Claparols C, et al. The antimalarial drug artemisinin alkylates heme in infected mice. Proc Natl Acad Sci USA. 2005;102:13676–13680.
  • Selmeczi K, Robert A, Claparols C, et al. Alkylation of human hemoglobin A0 by the antimalarial drug artemisinin. FEBS Lett. 2004;556:245–248.
  • Yang YZ, Little B, Meshnick SR. Alkylation of proteins by artemisinin. Effects of heme, pH, and drug structure. Biochem Pharmacol. 1994;48:569–573.
  • Eichhorn T, Winter D, Büchele B, et al. Molecular interaction of artemisinin with translationally controlled tumor protein (TCTP) of Plasmodium falciparum. Biochem Pharmacol. 2013;85:38–45.
  • Bhisutthibhan J, Pan XQ, Hossler PA, et al. The Plasmodium falciparum translationally controlled tumor protein homolog and its reaction with the antimalarial drug artemisinin. J. Biol. Chem. 1998;273:16192–16198.
  • Lucas AT, Fu X, Liu J, et al. Ligand binding reveals a role for heme in translationally-controlled tumor protein dimerization. PLoS One. 2014;9:1–17.
  • Eckstein-Ludwig U, Webb RJ, Van Goethem IDA, et al. Artemisinins target the SERCA of Plasmodium falciparum. Nature. 2003;424:957–961.
  • Wishart DS, Feunang YD, Guo AC, et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 2018;46:D1074–D1082.
  • Li X, Wang X, Zhao K, et al. A novel approach for identifying the heme-binding proteins from mouse tissues. Genomics Proteomics Bioinformatics. 2003;1:78–86.
  • Wang J, Zhang CJ, Chia WN, et al. Haem-activated promiscuous targeting of artemisinin in Plasmodium falciparum. Nat Commun. 2015;6:10111.
  • Ravindra KC, Ho WE, Cheng C, et al. Untargeted proteomics and systems-based mechanistic investigation of artesunate in human bronchial epithelial cells. Chem Res Toxicol. 2015;28:1903–1913.
  • Tenhunen R, Marver HS, Schmid R. The enzymatic conversion of heme to bilirubin by microsomal heme oxygenase. Proc Natl Acad Sci USA. 1968;61:748–755.
  • Chung SW, Hall SR, Perrella MA. Role of haem oxygenase-1 in microbial host defence. Cell Microbiol. 2009;11:199–207.
  • Wagener FA, Volk HD, Willis D, et al. Different faces of the heme-heme oxygenase system in inflammation. Pharmacol Rev. 2003;55:551–571.
  • Paiva CN, Feijó DF, Dutra FF, et al. Oxidative stress fuels Trypanosoma cruzi infection in mice. J Clin Invest. 2012;122:2531–2542.
  • Gutierrez FR, Pavanelli WR, Medina TS, et al. Haeme oxygenase activity protects the host against excessive cardiac inflammation during experimental Trypanosoma cruzi infection. Microbes Infect. 2014;16:28–39.
  • Ferrándiz ML, Devesa I. Inducers of heme oxygenase-1. Curr Pharm Des. 2008;14:473–486.
  • Koide T, Nose M, Ogihara Y, et al. Leishmanicidal effect of curcumin in vitro. Biol Pharm Bull. 2002;25:131–133.
  • Reddy RC, Vatsala PG, Keshamouni VG, et al. Curcumin for malaria therapy. Biochem Biophys Res Commun. 2005;326:472–474.
  • Nagajyothi F, Zhao D, Weiss LM, et al. Curcumin treatment provides protection against Trypanosoma cruzi infection. Parasitol Res. 2012;110:2491–2499.
  • Novaes RD, Sartini MVP, Rodrigues JPF, et al. Curcumin enhances the anti-Trypanosoma cruzi activity of benznidazole-based chemotherapy in acute experimental Chagas disease. Antimicrob Agents Chemother. 2016;60:3355–3364.
  • Wang N-P, Wang Z-F, Tootle S, et al. Curcumin promotes cardiac repair and ameliorates cardiac dysfunction following myocardial infarction. Br J Pharmacol. 2012;167:1550–1562.
  • Rimbaud S, Ruiz M, Piquereau J, et al. Resveratrol improves survival, hemodynamics and energetics in a rat model of hypertension leading to heart failure. PLoS One. 2011;6:e26391.
  • Frémont L. Biological effects of resveratrol. Antioxid Redox Signal. 2001;3:1041–1064.
  • Cheng TH, Liu JC, Lin H, et al. Inhibitory effect of resveratrol on angiotensin II-induced cardiomyocyte hypertrophy. Naunyn Schmiedebergs Arch Pharmacol. 2004;369:239–244.
  • Vilar-Pereira G, Carneiro VC, Mata-Santos H, et al. Resveratrol reverses functional Chagas heart disease in mice. PLoS Pathog. 2016;12:e1005947.
  • Pham NK, Mouriz J, Kima PE. Leishmania pifanoi amastigotes avoid macrophage production of superoxide by inducing heme degradation. Infect Immun. 2005;73:8322–8333.
  • Luz NF, Andrade BB, Feijó DF, et al. Heme oxygenase-1 promotes the persistence of Leishmania chagasi infection. J Immunol. 2012;188:4460–4467.
  • Dorlo TPC, Balasegaram M, Beijnen JH, et al. Miltefosine: a review of its pharmacology and therapeutic efficacy in the treatment of leishmaniasis. J Antimicrob Chemother. 2012;67:2576–2597.
  • Das S, Pandey K, Rabidas VN, et al. Effectiveness of miltefosine treatment in targeting anti-leishmanial HO-1/Nrf-2-mediated oxidative responses in visceral leishmaniasis patients. J Antimicrob Chemother. 2013;68:2059–2065.
  • Ferreira A, Balla J, Jeney V, et al. A central role for free heme in the pathogenesis of severe malaria: the missing link? J Mol Med. 2008;86:1097–1111.
  • Seixas E, Gozzelino R, Chora A, et al. Heme oxygenase-1 affords protection against noncerebral forms of severe malaria. Proc Natl Acad Sci USA. 2009;106:15837–15842.
  • Pena AC, Penacho N, Mancio-Silva L, et al. A novel carbon monoxide-releasing molecule fully protects mice from severe malaria. Antimicrob Agents Chemother. 2012;56:1281–1290.
  • Okada K. The novel heme oxygenase-like protein from Plasmodium falciparum converts heme to bilirubin IXα in the apicoplast. FEBS Lett. 2009;583:313–319.
  • Sigala PA, Crowley JR, Hsieh S, et al. Direct tests of enzymatic heme degradation by the malaria parasite Plasmodium falciparum. J Biol Chem. 2012;287:37793–37807.
  • Cupello MP, Souza CF, Menna-Barreto RF, et al. Trypanosomatid essential metabolic pathway: new approaches about heme fate in Trypanosoma cruzi. Biochem Biophys Res Commun. 2014;449:216–221.
  • Lin YW, Wang J. Structure and function of heme proteins in non-native states: a mini-review. J Inorg Biochem. 2013;129:162–171.
  • Li T, Bonkovsky HL, Guo J. Structural analysis of heme proteins: implications for design and prediction. BMC Struct Biol. 2011;11:13.
  • Mansuri R, Kumar A, Rana S, et al. In vitro evaluation of antileishmanial activity of computationally screened compounds against ascorbate peroxidase to combat amphotericin B drug resistance. Antimicrob Agents Chemother. 2017;61:pii:e02429-16
  • Lepesheva GI, Hargrove TY, Anderson S, et al. Structural insights into inhibition of sterol 14α-demethylase in the human pathogen Trypanosoma cruzi. J Biol Chem. 2010;285:25582–25590.
  • Calvet CM, Vieira DF, Choi JY, et al. 4-Aminopyridyl-based CYP51 inhibitors as anti-Trypanosoma cruzi drug leads with improved pharmacokinetic profile and in vivo potency. J Med Chem. 2014;57:6989–7005.
  • Pettersen EF, Goddard TD, Huang CC, et al. UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem. 2004;25:1605–1612.
  • Fischer RT, Stam SH, Johnson PR, et al. Mechanistic studies of lanosterol 14 alpha-methyl demethylase: substrate requirements for the component reactions catalyzed by a single cytochrome P-450 isozyme. J Lipid Res. 1989;30:1621–1632.
  • Vieira DF, Choi JY, Calvet CM, et al. Binding mode and potency of N-indolyloxopyridinyl-4-aminopropanyl-based inhibitors targeting Trypanosoma cruzi CYP51. J Med Chem. 2014;57:10162–10175.
  • Lepesheva GI, Waterman MR. Sterol 14alpha-demethylase (CYP51) as a therapeutic target for human trypanosomiasis and leishmaniasis. Curr Top Med Chem. 2011;11:2060–2071.
  • Zvulunov A, Klaus S, Vardy D. Fluconazole for the treatment of cutaneous leishmaniasis. N Engl J Med. 2002;347:370–371.
  • Weinrauch L, Livshin R, Even-Paz Z, et al. Efficacy of ketoconazole in cutaneous leishmaniasis. Arch Dermatol Res. 1983;275:353–354.
  • Urbina JA, Payares G, Contreras LM, et al. Antiproliferative effects and mechanism of action of SCH 56592 against Trypanosoma (Schizotrypanum) cruzi: in vitro and in vivo studies. Antimicrob Agents Chemother. 1998;42:1771–1777.
  • Molina J, Martins-Filho O, Brener Z, et al. Activities of the triazole derivative SCH 56592 (Posaconazole) against drug-resistant strains of the protozoan parasite Trypanosoma (Schizotrypanum) cruzi in immunocompetent and immunosuppressed murine hosts. Antimicrob Agents Chemother. 2000;44:150–155.
  • Hargrove TY, Wawrzak Z, Alexander PW, et al. Complexes of Trypanosoma cruzi sterol 14α-demethylase (CYP51) with two pyridine-based drug candidates for Chagas disease: structural basis for pathogen selectivity. J Biol Chem. 2013;288:31602–31615.
  • Buckner FS, Urbina JA. Recent developments in sterol 14-demethylase inhibitors for Chagas disease. Int J Parasitol Drugs Drug Resist. 2012;2:236–242.
  • Molina I, Gómez i Prat J, Salvador F, et al. Randomized trial of posaconazole and benznidazole for chronic Chagas' disease. N Engl J Med. 2014;370:1899–1908.
  • Lepesheva GI, Villalta F, Waterman MR. Targeting Trypanosoma cruzi sterol 14α-demethylase (CYP51). Adv Parasitol. 2011;75:65–87.
  • Villalta F, Dobish MC, Nde PN, et al. VNI cures acute and chronic experimental Chagas disease. J Infect Dis. 2013;208:504–511.
  • Doyle PS, Chen C-K, Johnston JB, et al. A nonazole CYP51 inhibitor cures Chagas’ disease in a mouse model of acute infection. Antimicrob Agents Chemother. 2010;54:2480–2488.
  • Fry M, Pudney M. Site of action of the antimalarial hydroxynaphthoquinone, 2-[trans-4-(4’-chlorophenyl) cyclohexyl]-3-hydroxy-1,4-naphthoquinone (566C80). Biochem Pharmacol. 1992;43:1545–1553.
  • Srivastava IK, Rottenberg H, Vaidya AB. Atovaquone, a broad spectrum antiparasitic drug, collapses mitochondrial membrane potential in a malarial parasite. J Biol Chem. 1997;272:3961–3966.
  • Nixon GL, Moss DM, Shone AE, et al. Antimalarial pharmacology and therapeutics of atovaquone. J Antimicrob Chemother. 2013;68:977–985.
  • Poulos TL. Heme enzyme structure and function. Chem Rev. 2014;114:3919–3962.
  • Adak S, Datta AK. Leishmania major encodes an unusual peroxidase that is a close homologue of plant ascorbate peroxidase: a novel role of the transmembrane domain. Biochem J. 2005;390:465–474.
  • Dolai S, Yadav RK, Pal S, et al. Overexpression of mitochondrial Leishmania major ascorbate peroxidase enhances tolerance to oxidative stress-induced programmed cell death and protein damage. Eukaryot Cell. 2009;8:1721–1731.
  • Pal S, Dolai S, Yadav RK, et al. Ascorbate peroxidase from Leishmania major controls the virulence of infective stage of promastigotes by regulating oxidative stress. PLoS One. 2010;5:e11271.
  • Wilkinson SR, Obado SO, Mauricio IL, et al. Trypanosoma cruzi expresses a plant-like ascorbate-dependent hemoperoxidase localized to the endoplasmic reticulum. Proc Natl Acad Sci USA. 2002;99:13453–13458.
  • Taylor MC, Lewis MD, Francisco AF, et al. The Trypanosoma cruzi vitamin C dependent peroxidase confers protection against oxidative stress but is not a determinant of virulence. PLoS Negl Trop Dis. 2015;99:13453–13458.
  • Nogueira FB, Rodrigues JFA, Correa MMS, et al. The level of ascorbate peroxidase is enhanced in benznidazole-resistant populations of Trypanosoma cruzi and its expression is modulated by stress generated by hydrogen peroxide. Mem Inst Oswaldo Cruz. 2012;107:494–502.
  • Girvan HM, Munro AW. Heme sensor proteins. J Biol Chem. 2013;288:13194–13203.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.