369
Views
8
CrossRef citations to date
0
Altmetric
Review Article

Targeting strategies of liposomal subunit vaccine delivery systems to improve vaccine efficacy

, , , , &
Pages 780-789 | Received 08 Sep 2018, Accepted 09 Nov 2018, Published online: 27 Dec 2018

References

  • Yang L, Li W, Kirberger M, et al. Design of nanomaterial based systems for novel vaccine development. Biomater Sci. 2016;4:785–802.
  • Nekkanti V, Kalepu S. Recent advances in liposomal drug delivery: a review. Pharm Nanotechnol. 2015;3:35–55.
  • Marasini N, Ghaffar KA, Skwarczynski M, et al. Chapter twelve – Liposomes as a vaccine delivery system. In: Skwarczynski M, Toth I, editors. Micro- and nanotechnology in vaccine development. Elsevier; 2017. p. 221–239.
  • Chauhan N, Tiwari S, Iype T, et al. An overview of adjuvants utilized in prophylactic vaccine formulation as immunomodulators. Expert Rev Vaccines. 2017;16:491–502.
  • Storni T, Kündig TM, Senti G, et al. Immunity in response to particulate antigen-delivery systems. Adv Drug Deliv Rev. 2005;57:333–355.
  • De Temmerman ML, Rejman J, Demeester J, et al. Particulate vaccines: on the quest for optimal delivery and immune response. Drug Discov Today. 2011;16:569–582.
  • Bernasconi V, Norling K, Bally M, et al. Mucosal vaccine development based on liposome technology. J Immunol Res. 2016;2016(5480):5482087.
  • Perrie Y, Crofts F, Devitt A, et al. Designing liposomal adjuvants for the next generation of vaccines. Adv Drug Deliv Rev. 2016;99:85–96.
  • Roberts SS, Chou AJ, Cheung NKV. Immunotherapy of childhood sarcomas. Front Oncol. 2015;5:181
  • Schwendener RA. Liposomes as vaccine delivery systems: a review of the recent advances. Ther Adv Vaccines. 2014;2:159–182.
  • Carneiro C, Correia A, Collins T, et al. DODAB:monoolein liposomes containing Candida albicans cell wall surface proteins: a novel adjuvant and delivery system. Eur J Pharm Biopharm. 2015;89:190–200.
  • Schmidt ST, Foged C, Korsholm KS, et al. Liposome-based adjuvants for subunit vaccines: formulation strategies for subunit antigens and immunostimulators. Pharmaceutics 2016;8:7.
  • Nycholat CM, Rademacher C, Kawasaki N, et al. In silico-aided design of a glycan ligand of sialoadhesin for in vivo targeting of macrophages. J Am Chem Soc. 2012;134:15696–15699.
  • Tran TH, Amiji MM. Targeted delivery systems for biological therapies of inflammatory diseases. Expert Opin Drug Deliv. 2015;12:393–414.
  • Jeong HS, Na KS, Hwang H, et al. Effect of space length of mannose ligand on uptake of mannosylated liposome in RAW 264.7 cells: in vitro and in vivo studies. J Biomed Mater Res A. 2014;102:4545–4553.
  • Kelly C, Jefferies C, Cryan SA. Targeted liposomal drug delivery to monocytes and macrophages. J Drug Deliv. 2011;2011:727241
  • Wang HW, Jiang PL, Lin SF, et al. Application of galactose-modified liposomes as a potent antigen presenting cell targeted carrier for intranasal immunization. Acta Biomater. 2013;9:5681–5688.
  • Tedesco S, Bolego C, Toniolo A, et al. Phenotypic activation and pharmacological outcomes of spontaneously differentiated human monocyte-derived macrophages. Immunobiology. 2015;220:545–554.
  • Poderoso T, Martínez P, Álvarez B, et al. Delivery of antigen to sialoadhesin or CD163 improves the specific immune response in pigs. Vaccine. 2011;29:4813–4820.
  • Huber A, Kallerup RS, Korsholm KS, et al. Trehalose diester glycolipids are superior to the monoesters in binding to Mincle, activation of macrophages in vitro and adjuvant activity in vivo. Innate Immun. 2016;22:405–418.
  • Richardson MB, Williams SJ. MCL and Mincle: C-type lectin receptors that sense damaged self and pathogen-associated molecular patterns. Front Immunol. 2014;5:288.
  • Delputte PL, Gorp HV, Favoreel HW, et al. Porcine sialoadhesin (CD169/Siglec-1) is an endocytic receptor that allows targeted delivery of toxins and antigens to macrophages. PLoS One. 2011;6:e16827.
  • Chen WC, Kawasaki N, Nycholat CM, et al. Antigen delivery to macrophages using liposomal nanoparticles targeting sialoadhesin/CD169. PLoS One. 2012;7:e39039.
  • Varghese B, Vlashi E, Xia W, et al. Folate receptor-β in activated macrophages: ligand binding and receptor recycling kinetics. Mol Pharmaceutics. 2014;11:3609–3616.
  • Vartak A, Sucheck SJ. Recent advances in subunit vaccine carriers. Vaccines. 2016;4:12.
  • Chiang MC, Tullett KM, Lee YS, et al. Differential uptake and cross-presentation of soluble and necrotic cell antigen by human DC subsets. Eur J Immunol. 2016;46:329–339.
  • Balkow S, Loser K, Krummen M, et al. Dendritic cell activation by combined exposure to anti-CD40 plus interleukin (IL)-12 and IL-18 efficiently stimulates anti-tumor immunity. Exp Dermatol. 2009;18:78–87.
  • Gringhuis SI, Dunnen JD, Litjens M, et al. Carbohydrate-specific signaling through the DC-SIGN signalosome tailors immunity to Mycobacterium tuberculosis, HIV-1 and Helicobacter pylori. Nat Immunol. 2009;10:1081–1088.
  • Faham A, Altin JG. Ag-bearing liposomes engrafted with peptides that interact with CD11c/CD18 induce potent Ag-specific and antitumor immunity. Int J Cancer. 2011;129:1391–1403.
  • Kawauchi Y, Kuroda Y, Kojima N. Comparison of the carbohydrate preference of SIGNR1 as a phagocytic receptor with the preference as an adhesion molecule. Int Immunopharmacol. 2014;19:27–36.
  • Li P, Chen S, Jiang Y, et al. Dendritic cell targeted liposomes-protamine-DNA complexes mediated by synthetic mannosylated cholesterol as a potential carrier for DNA vaccine. Nanotechnology. 2013;24:295101.
  • Pichon C, Midoux P. Mannosylated and histidylated LPR technology for vaccination with tumor antigen mRNA. Methods Mol Biol. 2013;969:247–274.
  • Unger WWJ, Beelen AJV, Bruijns SC, et al. Glycan-modified liposomes boost CD4+ and CD8+ T-cell responses by targeting DC-SIGN on dendritic cells. J Control Release. 2012;160:88.
  • Unger WWJ, Van KY. ‘Dressed for success’ C-type lectin receptors for the delivery of glyco-vaccines to dendritic cells. Curr Opin Immunol. 2011;23:131–137.
  • Shi C, Pamer EG. Monocyte recruitment during infection and inflammation. Nat Rev Immunol. 2011;11:762–774.
  • Johansen PT, Zucker D, Parhamifar L, et al. Monocyte targeting and activation by cationic liposomes formulated with a TLR7 agonist. Expert Opin Drug Deliv. 2015;12:1045–1058.
  • Bendelac A, Savage PB, Teyton L. The biology of NKT cells. Annu Rev Immunol. 2007;25:297–336.
  • Abdelmegeed H, Nakamura T, Harashima H. In vivo inverse correlation in the activation of natural killer T cells through dual-signal stimulation via a combination of α-galactosylceramide-loaded liposomes and interleukin-12. J Pharm Sci. 2016;105:250–256.
  • Richter J, Neparidze N, Zhang L, et al. Clinical regressions and broad immune activation following combination therapy targeting human NKT cells in myeloma. Blood. 2013;121:423–430.
  • Pal I, Ramsey JD. The role of the lymphatic system in vaccine trafficking and immune response. Adv Drug Deliv Rev. 2011;63:909–922.
  • Zhang XY, Lu WY. Recent advances in lymphatic targeted drug delivery system for tumor metastasis. Cancer Biol Med. 2014;11:247–254.
  • Singh I, Swami R, Khan W, et al. Lymphatic system: a prospective area for advanced targeting of particulate drug carriers. Expert Opin Drug Deliv. 2014;11:211–229.
  • Dudziak D, Kamphorst AO, Heidkamp GF, et al. Differential antigen processing by dendritic cell subsets in vivo. Science. 2007;315:107
  • Allan RS, Smith CM, Belz GT, et al. Epidermal viral immunity induced by CD8α+ dendritic cells but not by Langerhans cells. Science. 2003;301:1925–1928.
  • Asano K, Nabeyama A, Miyake Y, et al. CD169-positive macrophages dominate antitumor immunity by crosspresenting dead cell-associated antigens. Immunity. 2011;34:85–95.
  • Cuong NV, Hsieh MF. Molecular targeting of liposomal nano-particles to lymphatic system. Curr Cancer Drug Targets. 2011;11:147–155.
  • Wang C, Liu P, Zhuang Y, et al. Lymphatic-targeted cationic liposomes: a robust vaccine adjuvant for promoting long-term immunological memory. Vaccine. 2014;32:5475–5483.
  • Jiang H, Wang Q, Sun X. Lymph node targeting strategies to improve vaccination efficacy. J Control Release. 2017;267:47–56.
  • Gao J, Ochyl LJ, Yang E, et al. Cationic liposomes promote antigen cross-presentation in dendritic cells by alkalizing the lysosomal pH and limiting the degradation of antigens. Int J Nanomedicine. 2017;12:1251–1264.
  • Zhuang Y, Ma Y, Wang C, et al. PEGylated cationic liposomes robustly augment vaccine-induced immune responses: role of lymphatic trafficking and biodistribution. J Control Release. 2012;159:135–142.
  • Wang N, Zhen Y, Jin Y, et al. Combining different types of multifunctional liposomes loaded with ammonium bicarbonate to fabricate microneedle arrays as a vaginal mucosal vaccine adjuvant-dual delivery system (VADDS). J Control Release. 2017;246:12–29.
  • Detienne S, Welsby I, Collignon C, et al. Central role of CD169+ lymph node resident macrophages in the adjuvanticity of the QS-21 component of AS01. Sci Rep. 2016;6:39475
  • Hanson MC, Crespo MP, Abraham W, et al. Nanoparticulate STING agonists are potent lymph node-targeted vaccine adjuvants. J Clin Invest. 2015;125:2532–2546.
  • Dara LB, Kathryn MM, Katia ST, et al. STING is a direct innate immune sensor of cyclic di-GMP. Nature. 2011;478:515.
  • Gupta PN. Mucosal vaccine delivery and M cell targeting. In: Devarajan PV, Jain S, editors. Targeted drug delivery: concepts and design. Springer International Publishing; 2015. p. 313–337.
  • Himi T, Takano K, Ogasawara N, et al. Mucosal immune barrier and antigen-presenting system in human nasal epithelial cells. Adv Otorhinolaryngol. 2011;72:28–30.
  • Suzuki H, Watari A, Hashimoto E, et al. C-terminal Clostridium perfringens enterotoxin-mediated antigen delivery for nasal pneumococcal vaccine. PLoS One. 2015;10:e0126352.
  • Ye T, Yue Y, Fan X, et al. M cell-targeting strategy facilitates mucosal immune response and enhances protection against CVB3-induced viral myocarditis elicited by chitosan-DNA vaccine. Vaccine. 2014;32:4457–4465.
  • Da SC, Rueda F, Löwik CW, et al. Combinatorial prospects of nano-targeted chemoimmunotherapy. Biomaterials. 2016;83:308–320.
  • Tyagi RK, Parmar R, Patel N. A generic RNA pulsed DC based approach for developing therapeutic intervention against nasopharyngeal carcinoma. Hum Vaccin. 2017;13:854–866.
  • Riether C, Schürch C, Ochsenbein AF. From “magic bullets” to specific cancer immunotherapy. Swiss Med Wkly. 2013;143:w13734
  • Joshi MD, Unger WJ, Storm G, et al. Targeting tumor antigens to dendritic cells using particulate carriers. J Control Release. 2012;161:25–37.
  • Shen KY, Liu HY, Li HJ, et al. A novel liposomal recombinant lipoimmunogen enhances anti-tumor immunity. J Control Release. 2016;233:57–63.
  • Varypataki EM, Benne N, Bouwstra J, et al. Efficient eradication of established tumors in mice with cationic liposome-based synthetic long-peptide vaccines. Cancer Immunol Res. 2017;5:222.
  • Talesh GA, Ebrahimi Z, Badiee A, et al. Poly (I:C)-DOTAP cationic nanoliposome containing multi-epitope HER2-derived peptide promotes vaccine-elicited anti-tumor immunity in a murine model. Immunol Lett. 2016;176:57–64.
  • Klauber TCB, Laursen JM, Zucker D, et al. Delivery of TLR7 agonist to monocytes and dendritic cells by DCIR targeted liposomes induces robust production of anti-cancer cytokines. Acta Biomater. 2017;53:367–377.
  • Takashi N, Daiki Y, Jun Y, et al. The nanoparticulation by octaarginine-modified liposome improves α-galactosylceramide-mediated antitumor therapy via systemic administration. J Control Release. 2013;171:216–224.
  • Jiang PL, Lin HJ, Wang HW, et al. Galactosylated liposome as a dendritic cell-targeted mucosal vaccine for inducing protective anti-tumor immunity. Acta Biomater. 2015;11:356–367.
  • Cruz LJ, Rueda F, Simón L, et al. Liposomes containing NY-ESO-1/tetanus toxoid and adjuvant peptides targeted to human dendritic cells via the Fc receptor for cancer vaccines. Nanomedicine. 2014;9:435–449.
  • Comabella M, Montalban X, Münz C, et al. Targeting dendritic cells to treat multiple sclerosis. Nat Rev Neurol. 2010;6:499
  • Ahlers JD, Belyakov IM. Strategies for recruiting and targeting dendritic cells for optimizing HIV vaccines. Trends Mol Med. 2009;15:263–274.
  • Wijagkanalan W, Kawakami S, Higuchi Y, et al. Intratracheally instilled mannosylated cationic liposome/NFκB decoy complexes for effective prevention of LPS-induced lung inflammation. J Control Release. 2011;149:42–50.
  • Patin EC, Sam W, Selinda O, et al. Mincle-mediated anti-inflammatory IL-10 response counter-regulates IL-12 in vitro. Innate Immun. 2016;22:181–185.
  • Bogie JF, Boelen E, Louagie E, et al. CD169 is a marker for highly pathogenic phagocytes in multiple sclerosis. Mult Scler. 2017;1:352458517698759.
  • Bogie JF, Stinissen P, Hendriks JJ. Macrophage subsets and microglia in multiple sclerosis. Acta Neuropathol. 2014;28:191–213.
  • Gernez Y, Tirouvanziam R, Chanez P. Neutrophils in chronic inflammatory airway diseases: can we target them and how? Eur Respir J. 2010;35(3):467–469.
  • Inoh Y, Tadokoro S, Tanabe H, et al. Inhibitory effects of a cationic liposome on allergic reaction mediated by mast cell activation. Biochem Pharmacol. 2013;86:1731–1738.
  • Schoenen H, Bodendorfer B, Hitchens K, et al. Cutting edge: Mincle is essential for recognition and adjuvanticity of the mycobacterial cord factor and its synthetic analog trehalose-dibehenate. J Immunol. 2010;184:2756–2760.
  • van Dissel JT, Joosten SA, Hoff ST, et al. A novel liposomal adjuvant system, CAF01, promotes long-lived Mycobacterium tuberculosis-specific T-cell responses in human. Vaccine. 2014;32:7098–7107.
  • Garçon N, Mechelen MV. Recent clinical experience with vaccines using MPL-and QS-21-containing Adjuvant Systems. Expert Rev Vaccines. 2011;10:471–486.
  • Leroux-Roels I, Forgus S, De Boever F, et al. Improved CD4 + T cell responses to Mycobacterium tuberculosis in PPD-negative adults by M72/AS01 as compared to the M72/AS02 and Mtb72F/AS02 tuberculosis candidate vaccine formulations: a randomized trial. Vaccine. 2013;31:2196–2206.
  • Chlibek R, Bayas JM, Collins H, et al. Safety and immunogenicity of an AS01-adjuvanted varicella-zoster virus subunit candidate vaccine against herpes zoster in adults ≥50 years of age. J Infect Dis. 2013;208:1953.
  • RTS, S Clinical Trials Partnership. Efficacy and safety of RTS,S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa: final results of a phase 3, individually randomised, controlled trial. Lancet. 2015; 386:31–45.
  • Regules JA, Cicatelli SB, Bennett JW, et al. Fractional third and fourth dose of RTS,S/AS01 malaria candidate vaccine: a phase 2a controlled human malaria infection and immunogenicity study. J Infect Dis. 2016;185:1222–1228.
  • Frenz T, Grabski E, Durán V, et al. Antigen presenting cell-selective drug delivery by glycan-decorated nanocarriers. Eur J Pharm Biopharm. 2015;95:13–17.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.