4,000
Views
19
CrossRef citations to date
0
Altmetric
Original Article

Liposomes with asymmetric bilayers produced from inverse emulsions for nucleic acid delivery

, , , , , & show all
Pages 681-689 | Received 25 Oct 2018, Accepted 30 Jan 2019, Published online: 27 Feb 2019

References

  • de Jesus MB, Zuhorn IS. Solid lipid nanoparticles as nucleic acid delivery system: properties and molecular mechanisms. J Control Release. 2015;201:1–13.
  • Wei J, Jones J, Kang J, et al. RNA-induced silencing complex-bound small interfering RNA is a determinant of RNA interference-mediated gene silencing in mice. Mol Pharmacol. 2011;79:953–963.
  • Lobovkina T, Jacobson GB, Gonzalez-Gonzalez E, et al. In vivo sustained release of siRNA from solid lipid nanoparticles. ACS Nano. 2011;5:9977–9983.
  • Mokhtarieh AA, Cheong S, Kim S, et al. Asymmetric liposome particles with highly efficient encapsulation of siRNA and without nonspecific cell penetration suitable for target-specific delivery. Biochim Biophys Acta Biomembr. 2012;1818:1633–1641.
  • Liu F, Huang L. Development of non-viral vectors for systemic gene delivery. J Control Release. 2002;78:259–266.
  • Li W, Szoka FC. Lipid-based nanoparticles for nucleic acid delivery. Pharm Res. 2007;24:438–449.
  • Chiba M, Miyazaki M, Ishiwata S. Quantitative analysis of the lamellarity of giant liposomes prepared by the inverted emulsion method. Biophys J. 2014;107:346–354.
  • Fujii S, Matsuura T, Sunami T, et al. Liposome display for in vitro selection and evolution of membrane proteins. Nat Protoc. 2014;9:1578–1591.
  • Hadorn M, Boenzli E, Eggenberger Hotz P, et al. Hierarchical unilamellar vesicles of controlled compositional heterogeneity. PLoS One. 2012;7:1–7.
  • Nishimura K, Suzuki H, Toyota T, et al. Size control of giant unilamellar vesicles prepared from inverted emulsion droplets. J Colloid Interface Sci. 2012;376:119–125.
  • Saha A, Mondal G, Biswas A, et al. In vitro reconstitution of a cell-like environment using liposomes for amyloid beta peptide aggregation and its propagation. Chem Commun. 2013;49:6119–6121.
  • Yamada A, Yamanaka T, Hamada T, et al. Spontaneous transfer of phospholipid-coated oil-in-oil and water-in-oil micro-droplets through an oil/water interface. Langmuir. 2006;22:9824–9828.
  • Hamada T, Miura Y, Komatsu Y, et al. Construction of asymmetric cell-sized lipid vesicles from lipid-coated water-in-oil microdroplets. J Phys Chem B. 2008;112:14678–14681.
  • Kubatta EA, Rehage H. Characterization of giant vesicles formed by phase transfer processes. Colloid Polym Sci. 2009;287:1117–1122.
  • Pautot S, Frisken BJ, Weitz DA. Production of unilamellar vesicles using an inverted emulsion. Langmuir. 2003;19:2870–2879.
  • Pautot S, Frisken BJ, Weitz DA. Engineering asymmetric vesicles. Proc Natl Acad Sci USA. 2003;100:10718–10721.
  • Pontani LL, Van Der Gucht J, Salbreux G, et al. Reconstitution of an actin cortex inside a liposome. Biophys J. 2009;96:192–198.
  • Yanagisawa M, Iwamoto M, Kato A, et al. Oriented reconstitution of a membrane protein in a giant unilamellar vesicle: experimental verification with the potassium channel KcsA. J Am Chem Soc. 2011;133:11774–11779.
  • Hase M, Yamada A, Hamada T, et al. Transport of a cell-sized phospholipid micro-container across water/oil interface. Chem Phys Lett. 2006;426:441–444.
  • Pautot S, Frisken BJ, Cheng JX, et al. Spontaneous formation of lipid structures at oil/water lipid interfaces. Langmuir. 2003;19:10281–10287.
  • Takiguchi K, Negishi M, Tanaka-Takiguchi Y, et al. Transformation of ActoHMM assembly confined in cell-sized liposome. Langmuir. 2011;27:11528–11535.
  • Zhang L, Hu J, Xiao Z, et al. Preparation of liposomes by a controlled assembly method. Mol Cryst Liq Cryst Sci Technol Sect A Mol Cryst Liq Cryst. 1997;295:125–128.
  • Whittenton J, Harendra S, Pitchumani R, et al. Evaluation of asymmetric liposomal nanoparticles for encapsulation of polynucleotides. Langmuir. 2008;24:8533–8540.
  • Noireaux V, Libchaber A. A vesicle bioreactor as a step toward an artificial cell assembly. Proc Natl Acad Sci USA. 2004;101:17669–17674.
  • Hildebrandt E, Dessy A, Sommerling JH, et al. Interactions between phospholipids and organic phases: insights into lipoproteins and nanoemulsions. Langmuir. 2016;32:5821–5829.
  • Hildebrandt E, Vrânceanu M, Nirschl H, et al. Phospholipids as emulsifiers for micro/nano droplets suitable for biotechnological systems integration. La Houille Blanche. 2013;2:68–73.
  • McIntyre JC, Sleight RG. Fluorescence assay for phospholipid membrane asymmetry. Biochemistry. 1991;30:11819–11827.
  • Rouser G, Fleischer S, Yamamoto A. Two dimensional thin layer chromatographic separation of polar lipids and determination of phospholipids by phosphorus analysis of spots. Lipids. 1970;5:494–496.
  • Rasband WS. ImageJ, Bethesda, Maryland, USA: U. S. National Institutes of Health; 1997–2018. Available from: https://imagej.nih.gov/ij/
  • Hildebrandt E, Heyder C, de Matos MBC. et al. Liposomal formulations of mistletoe produced by centrifugal technologies and cell proliferation analysis of both mistletoe extracts and isolated mistletoe lectin I. In: Die Mistel in der Tumortherapie 4. Aktueller Stand der Forschung und klinische Anwendung. Essen, KVC Verlag, 2016. p. 97–112
  • Politova N, Tcholakova S, Denkov ND. Factors affecting the stability of water-oil-water emulsion films. Colloids Surf A Physicochem Eng Asp. 2017;522:608–620.
  • Koneva AS, Safonova EA, Kondrakhina PS, et al. Effect of water content on structural and phase behavior of water-in-oil (n-decane) microemulsion system stabilized by mixed nonionic surfactants SPAN 80/TWEEN 80. Colloids Surf A Physicochem Eng Asp. 2017;518:273–282.
  • Capdevila M, Maestro A, Porras M, et al. Preparation of span 80/oil/water highly concentrated emulsions: influence of composition and formation variables and scale-up. J Colloid Interface Sci. 2010;345:27–33.
  • Lv G, Wang F, Cai W, et al. Influences of addition of hydrophilic surfactants on the W/O emulsions stabilized by lipophilic surfactants. Colloids Surf A Physicochem Eng Asp. 2014;457:441–448.
  • Knoth A, Scherze I, Muschiolik G. Stability of water-in-oil-emulsions containing phosphatidylcholine-depleted lecithin. Food Hydrocoll. 2005;19:635–640.
  • Ushikubo FY, Cunha RL. Stability mechanisms of liquid water-in-oil emulsions. Food Hydrocoll. 2014;34:145–153.
  • Mahdi Jafari S, He Y, Bhandari B. Nano-emulsion production by sonication and microfluidization—a comparison. Int J Food Prop. 2006;9:475–485.
  • Delmas T, Piraux H, Couffin AC, et al. How to prepare and stabilize very small nanoemulsions. Langmuir. 2011;27:1683–1692.
  • Lapinski MM, Castro-Forero A, Greiner AJ, et al. Comparison of liposomes formed by sonication and extrusion: rotational and translational diffusion of an embedded chromophore. Langmuir. 2007;23:11677–11683.
  • Hu PC, Li S, Malmstadt N. Microfluidic fabrication of giant lipid vesicles. ACS Appl Mater Interfaces. 2011;3:1434–1440.
  • Abkarian M, Loiseau E, Massiera G. Continuous droplet interface crossing encapsulation (cDICE) for high throughput monodisperse vesicle design. Soft Matter. 2011;7:4610.