319
Views
19
CrossRef citations to date
0
Altmetric
Review Article

From poly(alkyl cyanoacrylate) to squalene as core material for the design of nanomedicines

, &
Pages 470-501 | Received 04 Feb 2019, Accepted 04 Feb 2019, Published online: 07 Mar 2019

References

  • Couvreur P, Gillard J, Van den Schrieck HG, et al. Mechanism of disintegration of tablets with a starch base. J Pharm Belg. 1974;29:399–414.
  • Couvreur P, Gillard J, Roland M. Influence of water penetration on the disintegration of tablets with a starchy base. Ann Pharm Fr. 1975;33:683–692.
  • Couvreur P, Roland M. The desintegration mechanism of pharmaceutical tablets with starch. J Pharm Belg. 1976;31:511–532
  • Kreuter J. Nanoparticles-a historical perspective. Int J Pharm. 2007;331:1–10.
  • Kreuter J, Speiser PP. New adjuvants on a polymethylmethacrylate base. Infect Immun. 1976;13:204–210.
  • Couvreur P, Tulkens P, Roland M, et al. Nanocapsules: a new type of lysosomotropic carrier. FEBS Lett. 1977;84:323–326.
  • Nicolas J, Couvreur P. Synthesis of poly(alkyl cyanoacrylate)-based colloidal nanomedicines. Wires Nanmed Nanobiotech. 2009;1:111–127.
  • Vauthier C, Dubernet C, Fattal E, et al. Poly(alkylcyanoacrylates) as biodegradable materials for biomedical applications. Adv Drug Deliv Rev. 2003;55:519–548.
  • Al Khouri Fallouh N, Roblot-Treupel L, Fessi H, et al. Development of a new process for the manufacture of polyisobutylcyanoacrylate nanocapsules. Int J Pharm. 1986;28:125–132.
  • Lambert G, Fattal E, Pinto-Alphandary H, et al. Polyisobutylcyanoacrylate nanocapsules containing an aqueous core as a novel colloidal carrier for the delivery of oligonucleotides. Pharm Res. 2000;17:707–714.
  • King ME, Kinney AY. Tissue adhesives: a new method of wound repair. Nurse Pract. 1999;24:66, 69–70, 73–74.
  • Oowaki H, Matsuda S, Sakai N, et al. Non-adhesive cyanoacrylate as an embolic material for endovascular neurosurgery. Biomaterials. 2000;21:1039–1046.
  • Reece TB, Maxey TS, Kron IL. A prospectus on tissue adhesives. Am J Surg. 2001;182:S40–S44.
  • Hallock GG. Expanded applications for octyl-2-cyanoacrylate as a tissue adhesive. Ann Plast Surg. 2001;46:185–189.
  • Marcovich R, Williams AL, Rubin MA, et al. Comparison of 2-octyl cyanoacrylate adhesive, fibrin glue, and suturing for wound closure in the porcine urinary tract. Urology. 2001;57:806–810.
  • Coover H, Dreifus D, O’Connor J. Cyanoacrylate adhesives. In: Skeist I, editor. Handbook of adhesives. New-York (NY): Van Nostrand Reinhold; 1990. p. 463–477.
  • Skeist I, Miron J. In: Bikales N, editor. Encyclopedia of polymer science and engineering. Vol. 2. ‎Hoboken (NJ): Wiley-Interscience; 1977. p. 1–19.
  • Pollak JS, White RI. Jr. The use of cyanoacrylate adhesives in peripheral embolization. J Vasc Interv Radiol. 2001;12:907–913.
  • Donnelly EF, Johnston DS, Pepper DC, et al. Ionic and zwitterionic polymerization of n-alkyl 2-cyanoacrylates. J Polym Sci B Polym Lett Ed. 1977;15:399–405.
  • Eromosele IC, Pepper DC, Ryan B. Water effects on the zwitterionic polymerization of cyanoacrylates. Makromol Chem. 1989;190:1613–1622.
  • Cronin JP, Pepper DC. Zwitterionic polymerization of butyl cyanoacrylate by triphenylphosphine and pyridine. Makromol Chem. 1988;189:85–102.
  • Pepper DC, Ryan B. Initiation processes in polymerizations of alkyl cyanoacrylates by tertiary amines: inhibition by strong acids. Makromol Chem. 1983;184:383–394.
  • Pepper DC. Kinetics and mechanisms of zwitterionic polymerizations of alkyl cyanoacrylates. Polym J. 1980;12:629.
  • Johnston DS, Pepper DC. Polymerisation via macrozwitterions, 1. Ethyl and butyl cyanoacrylates polymerised by triethyl and triphenylphosphines. Makromol Chem. 1981;182:393–406.
  • Johnston DS, Pepper DC. Polymerisation via macrozwitterions, 3. Ethyl and butyl cyanoacrylates polymerised by benzyldimethyl, triethyl and tribenzylamines. Makromol Chem. 1981;182:421–435.
  • Johnston DS, Pepper DC. Polymerisation via macrozwitterions, 2. Ethyl and butyl cyanoacrylates polymerised by pyridine and polyvinylpyridine. Makromol Chem. 1981;182:407–420.
  • Eromosele IC, Pepper DC. Anionic polymerization of butyl cyanoacrylate by tetrabutylammonium salts, 1. Initiation processes. Makromol Chem. 1989;190:3085–3094.
  • Eromosele IC, Pepper DC. Anionic polymerization of butyl cyanoacrylate by tetrabutylammonium salts, 2. Propagation rate constants. Makromol Chem. 1989;190:3095–3103.
  • Eromosele IC, Pepper DC. Free and paired-ion propagation in the polymerization of butyl cyanoacrylate by tetrabutylammonium salts. Makromol Chem Rapid Commun. 1986;7:639–643.
  • Kinsinger JB, Panchak JR, Kelso RL, et al. Methyl α-cyanoacrylate. II. Copolymerization studies. J Appl Polym Sci. 1965;9:429–437.
  • Yamada B, Yoshioka M, Otsu T. Determination of absolute rate constants for radical polymerization and copolymerization of ethyl α-cyanoacrylate in the presence of effective inhibitors against anionic polymerization. Makromol Chem. 1983;184:1025–1033.
  • Bevington JC, Jemmett JAL, Onyon PF. Polymerization of methyl α-cyanoacrylate—II: conditions for radical polymerization. Eur Polym J. 1976;12:255–257.
  • Otsu T, Yamada B. Determination of Q, e parameters for methyl α-cyanoacrylate. Makromol Chem. 1967;110:297–299.
  • Canale AJ, Goode WE, Kinsinger JB, et al. Methyl α-cyanoacrylate. I. Free-radical homopolymerization. J Appl Polym Sci. 1960;4:231–236.
  • Couvreur P, Kante B, Roland M, et al. Polycyanoacrylate nanocapsules as potential lysosomotropic carriers: preparation, morphological and sorptive properties. J Pharm Pharmacol. 1979;31:331–332.
  • Couvreur P, Roland M, Speiser P. Biodegradable submicroscopic particles containing a biologically active substance and composition containing them. United States US Patent 4,329,332. 1982.
  • Lambert G, Fattal E, Pinto-Alphandary H, et al. Polyisobutylcyanoacrylate nanocapsules containing an aqueous core for the delivery of oligonucleotides. Int J Pharm. 2001;214:13–16.
  • Fessi H, Puisieux F, Devissaguet JP, et al. Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int J Pharm. 1989;55:R1–R4.
  • Legrand P, Lesieur S, Bochot A, et al. Influence of polymer behaviour in organic solution on the production of polylactide nanoparticles by nanoprecipitation. Int J Pharm. 2007;344:33–43.
  • Seijo B, Fattal E, Roblot-Treupel L, et al. Design of nanoparticles of less than 50 nm diameter: preparation, characterization and drug loading. Int J Pharm. 1990;62:1–7.
  • Lenaerts V, Raymond P, Juhasz J, et al. New method for the preparation of cyanoacrylic nanoparticles with improved colloidal properties. J Pharm Sci. 1989;78:1051–1052.
  • Henry-Michelland S, Alonso MJ, Andremont A, et al. Attachment of antibiotics to nanoparticles: preparation, drug-release and antimicrobial activity in vitro. Int J Pharm. 1987;35:121–127.
  • Verdun C, Couvreur P, Vranckx H, et al. Development of a nanoparticle controlled-release formulation for human use. J Control Release. 1986;3:205–210.
  • Manil L, Roblot-Treupel L, Couvreur P. Isobutyl cyanoacrylate nanoparticles as a solid phase for an efficient immunoradiometric assay. Biomaterials. 1986;7:212–216.
  • Grangier JL, Puygrenier M, Gautier JC, et al. Nanoparticles as carriers for growth hormone releasing factor. J Control Release. 1991;15:3–13.
  • Couvreur P, Puisieux F. Nano- and microparticles for the delivery of polypeptides and proteins. Adv Drug Deliv Rev. 1993;10:141–162.
  • Guise V, Drouin JY, Benoit J, et al. Vidarabine-loaded nanoparticles: a physicochemical study. Pharm Res. 1990;7:736–741.
  • Alonso MJ, Losa C, Calvo P, et al. Approaches to improve the association of amikacin sulphate to poly(alkylcyanoacrylate) nanoparticles. Int J Pharm. 1991;68:69–76.
  • Lenaerts V, Couvreur P, Christiaens-Leyh D, et al. Degradation of poly (isobutyl cyanoacrylate) nanoparticles. Biomaterials. 1984;5:65–68.
  • Couvreur P, Kante B, Roland M, et al. Adsorption of antineoplastic drugs to polyalkylcyanoacrylate nanoparticles and their release in calf serum. J Pharm Sci. 1979;68:1521–1524.
  • Ammoury N, Fessi H, Devissaguet JP, et al. In vitro release kinetic pattern of indomethacin from poly(D,L-lactide) nanocapsules. J Pharm Sci. 1990;79:763–767.
  • Aboubakar M, Puisieux F, Couvreur P, et al. Physico-chemical characterization of insulin-loaded poly(isobutylcyanoacrylate) nanocapsules obtained by interfacial polymerization. Int J Pharm. 1999;183:63–66.
  • Damge C, Michel C, Aprahamian M, et al. New approach for oral administration of insulin with polyalkylcyanoacrylate nanocapsules as drug carrier. Diabetes. 1988;37:246–251.
  • Lowe PJ, Temple CS. Calcitonin and insulin in isobutylcyanoacrylate nanocapsules: protection against proteases and effect on intestinal absorption in rats. J Pharm Pharmacol. 1994;46:547–552.
  • Damge C, Vonderscher J, Marbach P, et al. Poly(alkyl cyanoacrylate) nanocapsules as a delivery system in the rat for octreotide, a long-acting somatostatin analogue. J Pharm Pharmacol. 1997;49:949–954.
  • Toub N, Bertrand JR, Tamaddon A, et al. Efficacy of siRNA nanocapsules targeted against the EWS-Fli1 oncogene in Ewing sarcoma. Pharm Res. 2006;23:892–900.
  • Hillaireau H, Le Doan T, Besnard M, et al. Encapsulation of antiviral nucleotide analogues azidothymidine-triphosphate and cidofovir in poly(iso-butylcyanoacrylate) nanocapsules. Int J Pharm. 2006;324:37–42.
  • Grislain L, Couvreur P, Lenaerts V, et al. Pharmacokinetics and distribution of a biodegradable drug-carrier. Int J Pharm. 1983;15:335–345.
  • Fernandez-Urrusuno R, Fattal E, Rodrigues JM Jr, et al. Effect of polymeric nanoparticle administration on the clearance activity of the mononuclear phagocyte system in mice. J Biomed Mater Res. 1996;31:401–408.
  • Lenaerts V, Nagelkerke JF, Van Berkel TJ, et al. In vivo uptake of polyisobutyl cyanoacrylate nanoparticles by rat liver Kupffer, endothelial, and parenchymal cells. J Pharm Sci. 1984;73:980–982.
  • Guiot P, Couvreur P. Quantitative study of the interaction between polybutylcyanoacrylate nanoparticles and mouse peritoneal macrophages in culture. J Pharm Belg. 1983;38:130–134.
  • Pinto-Alphandary H, Balland O, Laurent M, et al. Intracellular visualization of ampicillin-loaded nanoparticles in peritoneal macrophages infected in vitro with Salmonella typhimurium. Pharm Res. 1994;11:38–46.
  • Lherm C, Müller RH, Puisieux F, et al. Alkylcyanoacrylate drug carriers: II. Cytotoxicity of cyanoacrylate nanoparticles with different alkyl chain length. Int J Pharm. 1992;84:13–22.
  • Guise V, Jaffray P, Delattre J, et al. Comparative cell uptake of propidium iodide associated with liposomes or nanoparticles. Cell Mol Biol. 1987;33:397–405.
  • Verdun C, Brasseur F, Vranckx H, et al. Tissue distribution of doxorubicin associated with polyisohexylcyanoacrylate nanoparticles. Cancer Chemother Pharmacol. 1990;26:13–18.
  • Couvreur P, Kante B, Grislain L, et al. Toxicity of polyalkylcyanoacrylate nanoparticles II: doxorubicin-loaded nanoparticles. J Pharm Sci. 1982;71:790–792.
  • Garcia-Garcia E, Andrieux K, Gil S, et al. Colloidal carriers and blood–brain barrier (BBB) translocation: a way to deliver drugs to the brain? Int J Pharm. 2005;298:274–292.
  • Peracchia MT, Vauthier C, Puisieux F, et al. Development of sterically stabilized poly(isobutyl 2-cyanoacrylate) nanoparticles by chemical coupling of poly(ethylene glycol). J Biomed Mater Res. 1997;34:317–326.
  • Peracchia MT, Vauthier C, Passirani C, et al. Complement consumption by poly(ethylene glycol) in different conformations chemically coupled to poly(isobutyl 2-cyanoacrylate) nanoparticles. Life Sci. 1997;61:749–761.
  • Bravo-Osuna I, Ponchel G, Vauthier C. Tuning of shell and core characteristics of chitosan-decorated acrylic nanoparticles. Eur J Pharm Sci. 2007;30:143–154.
  • Bertholon I, Vauthier C, Labarre D. Complement activation by core–shell poly(isobutylcyanoacrylate)–polysaccharide nanoparticles: influences of surface morphology, length, and type of polysaccharide. Pharm Res. 2006;23:1313–1323.
  • Bertholon-Rajot I, Labarre D, Vauthier C. Influence of the initiator system, cerium–polysaccharide, on the surface properties of poly(isobutylcyanoacrylate) nanoparticles. Polymer. 2005;46:1407–1415.
  • Chauvierre C, Labarre D, Couvreur P, et al. Radical emulsion polymerization of alkylcyanoacrylates initiated by the redox system dextran − cerium(IV) under acidic aqueous conditions. Macromolecules. 2003;36:6018–6027.
  • Labarre D, Vauthier C, Chauvierre C, et al. Interactions of blood proteins with poly(isobutylcyanoacrylate) nanoparticles decorated with a polysaccharidic brush. Biomaterials. 2005;26:5075–5084.
  • Bertholon I, Hommel H, Labarre D, et al. Properties of polysaccharides grafted on nanoparticles investigated by EPR. Langmuir. 2006;22:5485–5490.
  • Chauvierre C, Leclerc L, Labarre D, et al. Enhancing the tolerance of poly(isobutylcyanoacrylate) nanoparticles with a modular surface design. Int J Pharm. 2007;338:327–332.
  • Peracchia MT, Desmaële D, Couvreur P, et al. Synthesis of a novel poly(MePEG cyanoacrylate-co-alkyl cyanoacrylate) amphiphilic copolymer for nanoparticle technology. Macromolecules. 1997;30:846–851.
  • Peracchia MT, Desmaele D, d’Angelo J, et al. Synthesis of a novel poly(MePEG-co-alkyl)cyanoacrylate, amphiphilic copolymer for the preparation of PEG-coated nanoparticles. Future strategies for drug delivery with particulate systems. Boca Raton (FL): Medpharm Scientific Publishers; 1998. p. 23–28.
  • Peracchia MT, Vauthier C, Desmaele D, et al. Pegylated nanoparticles from a novel methoxypolyethylene glycol cyanoacrylate hexadecyl cyanoacrylate amphiphilic copolymer. Pharm Res. 1998;15:550–556.
  • Peracchia MT, Harnisch S, Pinto-Alphandary H, et al. Visualization of in vitro protein-rejecting properties of PEGylated stealth (R) polycyanoacrylate nanoparticles. Biomaterials. 1999;20:1269–1275.
  • Peracchia MT, Fattal E, Desmaele D, et al. Stealth (R) PEGylated polycyanoacrylate nanoparticles for intravenous administration and splenic targeting. J Control Release. 1999;60:121–128.
  • Garcia-Garcia E, Gil S, Andrieux K, et al. A relevant in vitro rat model for the evaluation of blood-brain barrier translocation of nanoparticles. Cell Mol Life Sci. 2005;62:1400–1408.
  • Brigger I, Morizet J, Aubert G, et al. Poly(ethylene glycol)-coated hexadecylcyanoacrylate nanospheres display a combined effect for brain tumor targeting. J Pharmacol Exp Ther. 2002;303:928–936.
  • Calvo P, Gouritin B, Villarroya H, et al. Quantification and localization of PEGylated polycyanoacrylate nanoparticles in brain and spinal cord during experimental allergic encephalomyelitis in the rat. Eur J Neurosci. 2002;15:1317–1326.
  • Brambilla D, Verpillot R, Taverna MD, et al. New method based on capillary electrophoresis with laser-induced fluorescence detection (CE-LIF) to monitor interaction between nanoparticles and the amyloid-beta peptide. Anal Chem. 2010;82:10083–10089.
  • Brambilla D, Souguir H, Nicolas J, et al. Colloidal properties of biodegradable nanoparticles influence interaction with amyloid-beta peptide. J Biotechnol. 2011;156:338–340.
  • Brambilla D, Verpillot R, Le Droumaguet B, et al. PEGylated nanoparticles bind to and alter amyloid-beta peptide conformation: toward engineering of functional nanomedicines for Alzheimer’s disease. ACS Nano. 2012;6:5897–5908.
  • Brambilla D, Nicolas J, Le Droumaguet B, et al. Design of fluorescently tagged poly(alkyl cyanoacrylate) nanoparticles for human brain endothelial cell imaging. Chem Commun. 2010;46:2602–2604.
  • Nicolas J, Brambilla D, Carion O, et al. Quantum dot-loaded PEGylated poly(alkyl cyanoacrylate) nanoparticles for in vitro and in vivo imaging. Soft Matter. 2011;7:6187–6193.
  • Stella B, Arpicco S, Peracchia MT, et al. Design of folic acid-conjugated nanoparticles for drug targeting. J Pharm Sci. 2000;89:1452–1464.
  • Stella B, Marsaud V, Arpicco S, et al. Biological characterization of folic acid-conjugated poly(H2NPEGCA-co-HDCA) nanoparticles in cellular models. J Drug Target. 2007;15:146–153.
  • Nicolas J, Mura S, Brambilla D, et al. Design, functionalization strategies and biomedical applications of targeted biodegradable/biocompatible polymer-based nanocarriers for drug delivery. Chem Soc Rev. 2013;42:1147–1235.
  • Le Droumaguet B, Nicolas J, Brambilla D, et al. Versatile and efficient targeting using a single nanoparticulate platform: application to cancer and Alzheimer’s disease. ACS Nano. 2012;6:5866–5879.
  • Nicolas J, Bensaid F, Desmae¨le D, et al. Synthesis of highly functionalized poly(alkyl cyanoacrylate) nanoparticles by means of click chemistry. Macromolecules. 2008;41:8418–8428.
  • Le Droumaguet B, Souguir H, Brambilla D, et al. Selegiline-functionalized, PEGylated poly(alkyl cyanoacrylate) nanoparticles: investigation of interaction with amyloid-β peptide and surface reorganization. Int J Pharm. 2011;416:453–460.
  • Carradori D, Balducci C, Re F, et al. Antibody-functionalized polymer nanoparticle leading to memory recovery in Alzheimer’s disease-like transgenic mouse model. Nanomedicine. 2018;14:609–618.
  • Fattal E, Youssef M, Couvreur P, et al. Treatment of experimental salmonellosis in mice with ampicillin-bound nanoparticles. Antimicrob Agents Chemother. 1989;33:1540–1543.
  • Fattal E, Rojas J, Roblot-Treupel L, et al. Ampicillin-loaded liposomes and nanoparticles: comparison of drug loading, drug release and in vitro antimicrobial activity. J Microencapsul. 1991;8:29–36.
  • Youssef M, Fattal E, Alonso MJ, et al. Effectiveness of nanoparticle-bound ampicillin in the treatment of Listeria monocytogenes infection in athymic nude mice. Antimicrob Agents Chemother. 1988;32:1204–1207.
  • Forestier F, Gerrier P, Chaumanrd C, et al. Effect of nanoparticle-bound ampicillin on the survival of Listeria monocytogenes in mouse peritoneal macrophages. J Antimicrob Chemother. 1992;30:173–179.
  • Balland O, Pinto-Alphandary H, Viron A, et al. Intracellular distribution of ampicillin in murine macrophages infected with Salmonella typhimurium and treated with (3H)ampicillin-loaded nanoparticles. J Antimicrob Chemother. 1996;37:105–115.
  • Buchmeier NA, Heffron F. Inhibition of macrophage phagosome-lysosome fusion by Salmonella typhimurium. Infect Immun. 1991;59:2232–2238.
  • Brasseur F, Couvreur P, Kante B, et al. Actinomycin D adsorbed on polymethylcyanoacrylate nanoparticles: increased efficiency against an experimental tumor. Eur J Cancer. 1980;16:1441–1445.
  • Chiannilkulchai N, Driouich Z, Benoit JP, et al. Doxorubicin-loaded nanoparticles: increased efficiency in murine hepatic metastases. Sel Cancer Ther. 1989;5:1–11.
  • Cuvier C, Roblot-Treupel L, Millot JM, et al. Doxorubicin-loaded nanospheres bypass tumor cell multidrug resistance. Biochem Pharmacol. 1992;44:509–517.
  • Kartner N, Ling V. Multidrug resistance in cancer. Sci Am. 1989;260:44–51.
  • Roninson IB. Molecular mechanism of multidrug resistance in tumor cells. Clin Physiol Biochem. 1987;5:140–151.
  • Gros P, Croop J, Housman D. Mammalian multidrug resistance gene: complete cDNA sequence indicates strong homology to bacterial transport proteins. Cell. 1986;47:371–380.
  • Kubiak C, Couvreur P, Manil L, et al. Increased cytotoxicity of nanoparticle-carried Adriamycin in vitro and potentiation by verapamil and amiodarone. Biomaterials. 1989;10:553–556.
  • Bennis S, Chapey C, Couvreur P, et al. Enhanced cytotoxicity of doxorubicin encapsulated in polyisohexylcyanoacrylate nanospheres against multidrug-resistant tumour cells in culture. Eur J Cancer. 1994;30A:89–93.
  • Némati F, Dubernet C, de Verdière AC, et al. Some parameters influencing cytotoxicity of free doxorubicin and doxorubicin-loaded nanoparticles in sensitive and multidrug resistant leucemic murine cells: incubation time, number of nanoparticles per cell. Int J Pharm. 1994;102:55–62.
  • Colin de Verdiere A, Dubernet C, Nemati F, et al. Uptake of doxorubicin from loaded nanoparticles in multidrug-resistant leukemic murine cells. Cancer Chemother Pharmacol. 1994;33:504–508.
  • Pepin X, Attali L, Domrault C, et al. On the use of ion-pair chromatography to elucidate doxorubicin release mechanism from polyalkylcyanoacrylate nanoparticles at the cellular level. J Chromatogr B Biomed Sci Appl. 1997;702:181–191.
  • Barraud L, Merle P, Soma E, et al. Increase of doxorubicin sensitivity by doxorubicin-loading into nanoparticles for hepatocellular carcinoma cells in vitro and in vivo. J Hepatol. 2005;42:736–743.
  • Kattan J, Droz JP, Couvreur P, et al. Phase I clinical trial and pharmacokinetic evaluation of doxorubicin carried by polyisohexylcyanoacrylate nanoparticles. Invest New Drugs. 1992;10:191–199.
  • Merle P, Camus P, Abergel A, et al. Safety and efficacy of intra-arterial hepatic chemotherapy with doxorubicin-loaded nanoparticles in hepatocellular carcinoma. ESMO Open. 2017;2:e000238.
  • Fattal E, Vauthier C, Aynie I, et al. Biodegradable polyalkylcyanoacrylate nanoparticles for the delivery of oligonucleotides. J Control Release. 1998;53:137–143.
  • Chavany C, Le Doan T, Couvreur P, et al. Polyalkylcyanoacrylate nanoparticles as polymeric carriers for antisense oligonucleotides. Pharm Res. 1992;09: 441–449.
  • Chavany C, Saison-Behmoaras T, Le Doan T, et al. Adsorption of oligonucleotides onto polyisohexylcyanoacrylate nanoparticles protects them against nucleases and increases their cellular uptake. Pharm Res. 1994;11:1370–1378.
  • Nakada Y, Fattal E, Foulquier M, et al. Pharmacokinetics and biodistribution of oligonucleotide adsorbed onto poly(isobutylcyanoacrylate) nanoparticles after intravenous administration in mice. Pharm Res. 1996;13:38–43.
  • Schwab G, Chavany C, Duroux I, et al. Antisense oligonucleotides adsorbed to polyalkylcyanoacrylate nanoparticles specifically inhibit mutated Ha-ras-mediated cell proliferation and tumorigenicity in nude mice. Proc Natl Acad Sci USA. 1994;91:10460–10464.
  • Lambert G, Fattal E, Brehier A, et al. Effect of polyisobutylcyanoacrylate nanoparticles and lipofectin loaded with oligonucleotides on cell viability and PKC alpha neosynthesis in HepG2 cells. Biochimie. 1998;80:969–976.
  • Lambert G, Bertrand JR, Fattal E, et al. EWS fli-1 antisense nanocapsules inhibits Ewing sarcoma-related tumor in mice. Biochem Biophys Res Commun. 2000;279:401–406.
  • Tanaka K, Iwakuma T, Harimaya K, et al. EWS-Fli1 antisense oligodeoxynucleotide inhibits proliferation of human Ewing’s sarcoma and primitive neuroectodermal tumor cells. J Clin Invest. 1997;99:239–247.
  • Stein CA. Phosphorothioate antisense oligodeoxynucleotides: questions of specificity. Trends Biotechnol. 1996;14:147–149.
  • Michel C, Aprahamian M, Defontaine L, et al. The effect of site of administration in the gastrointestinal tract on the absorption of insulin from nanocapsules in diabetic rats. J Pharm Pharmacol. 1991;43:1–5.
  • Shakweh M, Ponchel G, Fattal E. Particle uptake by Peyer’s patches: a pathway for drug and vaccine delivery. Expert Opin Drug Deliv. 2004;1:141–163.
  • Gautier JC, Grangier JL, Barbier A, et al. Biodegradable nanoparticles for subcutaneous administration of growth hormone releasing factor (hGRF). J Control Release. 1992;20:67–77.
  • Hertel LW, Boder GB, Kroin JS, et al. Evaluation of the antitumor activity of gemcitabine (2',2'-difluoro-2'-deoxycytidine). Cancer Res. 1990;50:4417–4422.
  • Bergman AM, Pinedo HM, Peters GJ. Determinants of resistance to 2′,2′-difluorodeoxycytidine (gemcitabine). Drug Resist Updat. 2002;5:19–33.
  • Bouffard DY, Laliberté J, Momparler RL. Kinetic studies on 2',2'-difluorodeoxycytidine (gemcitabine) with purified human deoxycytidine kinase and cytidine deaminase. Biochem Pharmacol. 1993;45:1857–1861.
  • Nordh S, Ansari D, Andersson R. hENT1 expression is predictive of gemcitabine outcome in pancreatic cancer: a systematic review. World J Gastroenterol. 2014;20:8482–8490.
  • Castelli F, Sarpietro MG, Ceruti M, et al. Characterization of lipophilic gemcitabine prodrug-liposomal membrane interaction by differential scanning calorimetry. Mol Pharm. 2006;3:737–744.
  • Castelli F, Sarpietro MG, Rocco F, et al. Interaction of lipophilic gemcitabine prodrugs with biomembrane models studied by Langmuir-Blodgett technique. J Colloid Interface Sci. 2007;313:363–368.
  • Immordino ML, Brusa P, Rocco F, et al. Preparation, characterization, cytotoxicity and pharmacokinetics of liposomes containing lipophilic gemcitabine prodrugs. J Control Release. 2004;100:331–346.
  • Brusa P, Immordino ML, Rocco F, et al. Antitumor activity and pharmacokinetics of liposomes containing lipophilic gemcitabine prodrugs. Anticancer Res. 2007;27:195–199.
  • Chung WG, Sandoval MA, Sloat BR, et al. Stearoyl gemcitabine nanoparticles overcome resistance related to the over-expression of ribonucleotide reductase subunit M1. J Control Release. 2012;157:132–140.
  • Stella B, Arpicco S, Rocco F, et al. Encapsulation of gemcitabine lipophilic derivatives into polycyanoacrylate nanospheres and nanocapsules. Int J Pharm. 2007;344:71–77.
  • Couvreur P, Stella B, Reddy LH, et al. Squalenoyl nanomedicines as potential therapeutics. Nano Lett. 2006;6:2544–2548.
  • Reddy LH, Dubernet C, Mouelhi SL, et al. A new nanomedicine of gemcitabine displays enhanced anticancer activity in sensitive and resistant leukemia types. J Control Release. 2007;124:20–27.
  • Reddy LH, Marque P-E, Dubernet C, et al. Preclinical toxicology (subacute and acute) and efficacy of a new squalenoyl gemcitabine anticancer nanomedicine. J Pharmacol Exp Ther. 2008;325:484–490.
  • Kotelevets L, Chastre E, Caron J, et al. A squalene-based nanomedicine for oral treatment of colon cancer. Cancer Res. 2017;77:2964–2975.
  • Maksimenko A, Dosio F, Mougin J, et al. A unique squalenoylated and nonpegylated doxorubicin nanomedicine with systemic long-circulating properties and anticancer activity. Proc Natl Acad Sci USA. 2014;111:E217–E226.
  • Maksimenko A, Caron J, Mougin J, et al. Gemcitabine-based therapy for pancreatic cancer using the squalenoyl nucleoside monophosphate nanoassemblies. Int J Pharm. 2015;482:38–46.
  • Gaudin A, Yemisci M, Eroglu H, et al. Squalenoyl adenosine nanoparticles provide neuroprotection after stroke and spinal cord injury. Nat Nanotech. 2014;9:1054–1062.
  • Abed N, Said-Hassane F, Zouhiri F, et al. An efficient system for intracellular delivery of beta-lactam antibiotics to overcome bacterial resistance. Sci Rep. 2015;5:13500.
  • Semiramoth N, Di Meo C, Zouhiri F, et al. Self-assembled squalenoylated penicillin bioconjugates: an original approach for the treatment of intracellular infections. ACS Nano. 2012;6:3820–3831.
  • Hillaireau H, Dereuddre-Bosquet N, Skanji R, et al. Anti-HIV efficacy and biodistribution of nucleoside reverse transcriptase inhibitors delivered as squalenoylated prodrug nanoassemblies. Biomaterials. 2013;34:4831–4838.
  • Caron J, Reddy LH, Lepetre-Mouelhi S, et al. Squalenoyl nucleoside monophosphate nanoassemblies: new prodrug strategy for the delivery of nucleotide analogues. Bioorg Med Chem Lett. 2010;20:2761–2764.
  • Othman M, Desmaële D, Couvreur P, et al. Synthesis and physicochemical characterization of new squalenoyl amphiphilic gadolinium complexes as nanoparticle contrast agents. Org Biomol Chem. 2011;9:4367–4386.
  • Bui DT, Nicolas J, Maksimenko A, et al. Multifunctional squalene-based prodrug nanoparticles for targeted cancer therapy. Chem Commun (Camb). 2014;50:5336–5338.
  • Valetti S, Mura S, Noiray M, et al. Peptide conjugation: before or after nanoparticle formation? Bioconjug Chem. 2014;25:1971–1983.
  • Valetti S, Maione F, Mura S, et al. Peptide-functionalized nanoparticles for selective targeting of pancreatic tumor. J Control Release. 2014;192:29–39.
  • Gopalakrishnan G, Lepetre S, Maksimenko A, et al. Lipid-conjugation of endogenous neuropeptides: improved biotherapy against human pancreatic cancer. Adv Healthcare Mater. 2015;4:1015–1022.
  • Raouane M, Desmaele D, Gilbert-Sirieix M, et al. Synthesis, characterization, and in vivo delivery of siRNA-squalene nanoparticles targeting fusion oncogene in papillary thyroid carcinoma. J Med Chem. 2011;54:4067–4076.
  • Massaad-Massade L, Boutary S, Caillaud M, et al. New formulation for the delivery of oligonucleotides using “clickable” siRNA-polyisoprenoid-conjugated nanoparticles: application to cancers harboring fusion oncogenes. Bioconjugate Chem. 2018;29:1961–1972.
  • Bekkara-Aounallah F, Gref R, Othman M, et al. Novel PEGylated nanoassemblies made of self-assembled squalenoyl nucleoside analogues. Adv Funct Mater. 2008;18:3715–3725.
  • Rautio J, Meanwell NA, Di L, et al. The expanding role of prodrugs in contemporary drug design and development. Nat Rev Drug Discov. 2018;17:559.
  • Mura S, Bui DT, Couvreur P, et al. Lipid prodrug nanocarriers in cancer therapy. J Control Release. 2015;208:25–41.
  • Epaule C, Maksimenko A, Bastian G, et al. X-ray microfluorescence for biodistribution studies of nanomedicines. Int J Pharm. 2017;531:343–349.
  • Skarbek C, Lesueur LL, Chapuis H, et al. Preactivated oxazaphosphorines designed for isophosphoramide mustard delivery as bulk form or nanoassemblies: synthesis and proof of concept. J Med Chem. 2015;58:705–717.
  • Reddy LH, Khoury H, Paci A, et al. Squalenoylation favorably modifies the in vivo pharmacokinetics and biodistribution of gemcitabine in mice. Drug Metab Dispos. 2008;36:1570–1577.
  • Reddy LH, Renoir JM, Marsaud V, et al. Anticancer efficacy of squalenoyl gemcitabine nanomedicine on 60 human tumor cell panel and on experimental tumor. Mol Pharm. 2009;6:1526–1535.
  • Buchy E, Vukosavljevic B, Windbergs M, et al. Synthesis of a deuterated probe for the confocal Raman microscopy imaging of squalenoyl nanomedicines. Beilstein J Org Chem. 2016;12:1127–1135.
  • Caron J, Maksimenko A, Wack S, et al. Improving the antitumor activity of squalenoyl-paclitaxel conjugate nanoassemblies by manipulating the linker between paclitaxel and squalene. Adv Healthc Mater. 2013;2:172–185.
  • Caron J, Maksimenko A, Mougin J, et al. Combined antitumoral therapy with nanoassemblies of bolaform polyisoprenoyl paclitaxel/gemcitabine prodrugs. Polym Chem. 2014;5:1662–1673.
  • Mura S, Buchy E, Askin G, et al. In vitro investigation of multidrug nanoparticles for combined therapy with gemcitabine and a tyrosine kinase inhibitor: together is not better. Biochimie. 2016;130:4–13.
  • Gaudin A, Tagit O, Sobot D, et al. Transport mechanisms of squalenoyl-adenosine nanoparticles across the blood–brain barrier. Chem Mater. 2015;27:3636–3647.
  • Cheikh-Ali Z, Caron J, Cojean S, et al. “Squalenoylcurcumin” nanoassemblies as water-dispersible drug candidates with antileishmanial activity. ChemMedChem. 2015;10:411–418.
  • Maksimenko A, Mougin J, Mura S, et al. Polyisoprenoyl gemcitabine conjugates self- assemble as nanoparticles, useful for cancer therapy. Cancer Lett. 2013;334:346–353.
  • Mura S, Zouhiri F, Lerondel S, et al. Novel isoprenoyl nanoassembled prodrug for paclitaxel delivery. Bioconjugate Chem. 2013;24:1840–1849.
  • Van Tamelen EE. Bioorganic chemistry: sterols and acrylic terpene terminal expoxides. Acc Chem Res. 1968;1:111–120.
  • Desmaële D, Gref R, Couvreur P. Squalenoylation: a generic platform for nanoparticular drug delivery. J Control Release. 2012;161:609–618.
  • Kingston DG. Recent advances in the chemistry of taxol. J Nat Prod. 2000;63:726–734.
  • Zhu Q, Guo Z, Huang N, et al. Comparative molecular field analysis of a series of paclitaxel analogues. J Med Chem. 1997;40:4319–4328.
  • Dosio F, Reddy LH, Ferrero A, et al. Novel nanoassemblies composed of squalenoyl − paclitaxel derivatives: synthesis, characterization, and biological evaluation. Bioconjugate Chem. 2010;21:1349–1361.
  • Arias JL, Reddy LH, Othman M, et al. Squalene based nanocomposites: a new platform for the design of multifunctional pharmaceutical theragnostics. ACS Nano. 2011;5:1513–1521.
  • Stork G, Burgstahler AW. The stereochemistry of polyene cyclization. J Am Chem Soc. 1955;77:5068–5077.
  • Couvreur P, Reddy LH, Mangenot S, et al. Discovery of new hexagonal supramolecular nanostructures formed by squalenoylation of an anticancer nucleoside analogue. Small. 2008;4:247–253.
  • Mackey JR, Mani RS, Selner M, et al. Functional nucleoside transporters are required for gemcitabine influx and manifestation of toxicity in cancer cell lines. Cancer Res. 1998;58:4349–4357.
  • Kufe DW, Major PP, Egan EM, et al. Correlation of cytotoxicity with incorporation of ara-C into DNA. J Biol Chem. 1980;255:8997–8900.
  • Iwasaki H, Huang P, Keating MJ, et al. Differential incorporation of Ara-C, gemcitabine, and fludarabine into replicating and repairing DNA in proliferating human leukemia cells. Blood. 1997;90:270–278.
  • Sobot D, Mura S, Rouquette M, et al. Circulating lipoproteins: a Trojan Horse guiding squalenoylated drugs to LDL-accumulating cancer cells. Mol Ther. 2017;25:1596–1605.
  • Sobot D, Mura S, Yesylevskyy SO, et al. Conjugation of squalene to gemcitabine as unique approach exploiting endogenous lipoproteins for drug delivery. Nat Commun. 2017;8:15678.
  • Sobot D, Mura S, Couvreur P. Nanoparticles: blood components interactions. In: Kobayashi S, Müllen K, editors. Encyclopedia of polymeric nanomaterials. Berlin (Heidelberg): Springer Berlin Heidelberg; 2014. p. 1–10.
  • Nel AE, Madler L, Velegol D, et al. Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater. 2009;8:543–557.
  • Lundqvist M, Stigler J, Elia G, et al. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci. 2008;105:14265–14270.
  • Kapralov AA, Feng WH, Amoscato AA, et al. Adsorption of surfactant lipids by single-walled carbon nanotubes in mouse lung upon pharyngeal aspiration. ACS Nano. 2012;6:4147–4156.
  • Hellstrand E, Lynch I, Andersson A, et al. Complete high-density lipoproteins in nanoparticle corona. FEBS J. 2009;276:3372–3381.
  • Brown MS, Goldstein JL. A receptor-mediated pathway for cholesterol homeostasis. Science. 1986;232:34–47.
  • Vitols S, Gahrton G, Ost A, et al. Elevated low density lipoprotein receptor activity in leukemic cells with monocytic differentiation. Blood. 1984;63:1186–1193.
  • Vitols S, Söderberg-Reid K, Masquelier M, et al. Low density lipoprotein for delivery of a water-insoluble alkylating agent to malignant cells. In vitro and in vivo studies of a drug-lipoprotein complex. Br J Cancer. 1990;62:724–729.
  • Versluis AJ, van Geel PJ, Oppelaar H, et al. Receptor-mediated uptake of low-density lipoprotein by B16 melanoma cells in vitro and in vivo in mice. Br J Cancer. 1996;74:525–532.
  • Gal D, Macdonald PC, Porter JC, et al. Cholesterol metabolism in cancer cells in monolayer culture. III. Low-density lipoprotein metabolism. Int J Cancer. 1981;28:315–319.
  • Ho YK, Brown S, Bilheimer DW, et al. Regulation of low density lipoprotein receptor activity in freshly isolated human lymphocytes. J Clin Invest. 1976;58:1465–1474.
  • Firestone RA. Low-density lipoprotein as a vehicle for targeting antitumor compounds to cancer cells. Bioconjugate Chem. 1994;5:105–113.
  • Oschry Y, Eisenberg S. Rat plasma lipoproteins: re-evaluation of a lipoprotein system in an animal devoid of cholesteryl ester transfer activity. J Lipid Res. 1982;23:1099–1106.
  • Cayre F, Mura S, Andreiuk B, et al. In vivo FRET imaging to predict the risk associated with hepatic accumulation of squalene-based prodrug nanoparticles. Adv Healthcare Mater. 2018;7:1700830.
  • Samadi-Baboli M, Favre G, Bernadou J, et al. Comparative study of the incorporation of ellipticine-esters into low density lipoprotein (LDL) and selective cell uptake of drug-LDL complex via the LDL receptor pathway in vitro. Biochem Pharmacol. 1990;40:203–212.
  • Ng KK, Lovell JF, Zheng G. Lipoprotein-inspired nanoparticles for cancer theranostics. Acc Chem Res. 2011;44:1105–1113.
  • Kader A, Pater A. Loading anticancer drugs into HDL as well as LDL has little affect on properties of complexes and enhances cytotoxicity to human carcinoma cells. J Control Release. 2002;80:29–44.
  • Rensen PCN, de Vrueh RLA, Kuiper J, et al. Recombinant lipoproteins: lipoprotein-like lipid particles for drug targeting. Adv Drug Deliv Rev. 2001;47:251–276.
  • Christian DA, Cai S, Garbuzenko OB, et al. Flexible filaments for in vivo imaging and delivery: persistent circulation of filomicelles opens the dosage window for sustained tumor shrinkage. Mol Pharm. 2009;6:1343–1352.
  • Boison D. Adenosine as a neuromodulator in neurological diseases. Curr Opin Pharmacol. 2008;8:2–7.
  • Williams-Karnesky RL, Stenzel-Poore MP. Adenosine and stroke: maximizing the therapeutic potential of adenosine as a prophylactic and acute neuroprotectant. Curr Neuropharmacol. 2009;7:217–227.
  • de Mendonça A, Sebastião AM, Ribeiro JA. Adenosine: does it have a neuroprotective role after all? Brain Res Brain Res Rev. 2000;33:258–274.
  • Fredholm BB, Chen JF, Cunha RA, et al. Adenosine and brain function. Int Rev Neurobiol. 2005;63:191–270.
  • Moser GH, Schrader J, Deussen A. Turnover of adenosine in plasma of human and dog blood. Am J Physiol. 1989;256:C799–C806.
  • Gomes CV, Kaster MP, Tome AR, et al. Adenosine receptors and brain diseases: neuroprotection and neurodegeneration. Biochim Biophys Acta. 2011;1808:1380–1399.
  • Isakovic AJ, Abbott NJ, Redzic ZB. Brain to blood efflux transport of adenosine: blood-brain barrier studies in the rat. J Neurochem. 2004;90:272–286.
  • Bildstein L, Dubernet C, Marsaud V, et al. Transmembrane diffusion of gemcitabine by a nanoparticulate squalenoyl prodrug: an original drug delivery pathway. J Control Release. 2010;147:163–170.
  • Kwon BK, Hillyer J, Tetzlaff W. Translational research in spinal cord injury: a survey of opinion from the SCI community. J Neurotrauma. 2010;27:21–33.
  • Hanahan D. Heritable formation of pancreatic beta-cell tumours in transgenic mice expressing recombinant insulin/simian virus 40 oncogenes. Nature. 1985;315:115.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.