612
Views
11
CrossRef citations to date
0
Altmetric
Review Articles

Antimicrobial lipids in nano-carriers for antibacterial delivery

, , &
Pages 271-281 | Received 04 Sep 2019, Accepted 14 Oct 2019, Published online: 24 Oct 2019

References

  • Thormar H. Antibacterial effects of lipids: historical review (1881 to 1960). In Thormor H, editors. Lipids and essential oils as antimicrobial agents. Hoboken (NJ): John Wiley & Sons; 2011. p. 25–45.
  • Koch R. Über desinfection. Mittheil des kaiserl Gesundheitsamtes. 1881;1:234–282.
  • Thormar H, Hilmarsson H, Bergsson G. Antimicrobial lipids: role in innate immunity and potential use in prevention and treatment of infections. In Méndez-Vilas A, editors. Microbial pathogens and strategies for combating them: science, technology and education. Vol. 3. Badajoz (Spain): Formatex Research Center; 2013. p. 1474–1488.
  • Glassman HN. Surface active agents and their application in bacteriology. Bacteriol Rev. 1948;12(2):105.
  • Walker JE. The germicidal properties of soap. J Infect Dis. 1926;38(2):127–130.
  • Kabara JJ, Swieczkowski DM, Conley AJ, et al. Fatty acids and derivatives as antimicrobial agents. Antimicrob Agents Chemother. 1972;2(1):23–28.
  • Larsson K, Norén B, Odham G. Antimicrobial effect of simple lipids with different branches at the methyl end group. Antimicrob Agents Chemother. 1975;8(6):742–750.
  • Kabara J, Vrable R, Lie Ken Jie M. Antimicrobial lipids: natural and synthetic fatty acids and monoglycerides. Lipids. 1977;12(9):753–759.
  • Thormar H, Isaacs CE, Brown HR, et al. Inactivation of enveloped viruses and killing of cells by fatty acids and monoglycerides. Antimicrob Agents Chemother. 1987;31(1):27–31.
  • Do TQ, Moshkani S, Castillo P, et al. Lipids including cholesteryl linoleate and cholesteryl arachidonate contribute to the inherent antibacterial activity of human nasal fluid. J Immunol. 2008;181(6):4177–4187.
  • Singh PK, Tack BF, McCray PB Jr, et al. Synergistic and additive killing by antimicrobial factors found in human airway surface liquid. Am J Physiol-Lung Cell Mol Physiol. 2000;279(5):L799–L805.
  • Lee SH, Jeong SK, Ahn SK. An update of the defensive barrier function of skin. Yonsei Med J. 2006;47(3):293–306.
  • Desbois AP. Potential applications of antimicrobial fatty acids in medicine, agriculture and other industries. Recent Pat Antiinfect Drug Discov. 2012;7(2):111–122.
  • Fahy E, Cotter D, Sud M, et al. Lipid classification, structures and tools. Biochim Biophys Acta. 2011;1811(11):637–647.
  • McGaw L, Jäger A, Van Staden J, et al. Antibacterial effects of fatty acids and related compounds from plants. South Afr J Bot. 2002;68(4):417–423.
  • Loftsson T, Ilievska B, Asgrimsdottir GM, et al. Fatty acids from marine lipids: biological activity, formulation and stability. J Drug Deliv Sci Technol. 2016;34:71–75.
  • Desbois AP, Smith VJ. Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential. Appl Microbiol Biotechnol. 2010;85(6):1629–1642.
  • Porter E, Ma DC, Alvarez S, et al. Antimicrobial lipids: emerging effector molecules of innate host defense. World J Immunol. 2015;5:51.
  • Isaacs CE, Thormar H. The role of milk-derived antimicrobial lipids as antiviral and antibacterial agents. In: Jiri M, Claudia B, Pearay LO, editors. Immunology of milk and the neonate. New York (NY): Springer; 1991. p. 159–165.
  • Elias PM, editor The skin barrier as an innate immune element. In Elias PM, editor. Semin in immunopathology. Switzerland: Springer Nature Switzerland AG; 2007.
  • McDermott AM. Antimicrobial compounds in tears. Experimental eye research. 2013;117:53–61.
  • Dawson DV, Drake DR, Hill JR, et al. Organization, barrier function and antimicrobial lipids of the oral mucosa. Int J Cosmet Sci. 2013;35(3):220–223.
  • Wright JR. Pulmonary surfactant: a front line of lung host defense. J Clin Invest. 2003;111(10):1453–1455.
  • Lee JT, Jansen M, Yilma AN, et al. Antimicrobial lipids: novel innate defense molecules are elevated in sinus secretions of patients with chronic rhinosinusitis. Am J Rhinol Allergy. 2010;24(2):99–104.
  • Yoon B, Jackman J, Valle-González E, et al. Antibacterial free fatty acids and monoglycerides: biological activities, experimental testing, and therapeutic applications. IJMS. 2018;19(4):1114.
  • Thormar H, Hilmarsson H. Killing of Campylobacter on contaminated plastic and wooden cutting boards by glycerol monocaprate (monocaprin). Lett Appl Microbiol. 2010;51(3):319–324.
  • Schlievert PM, Peterson ML. Glycerol monolaurate antibacterial activity in broth and biofilm cultures. PloS One. 2012;7(7):e40350.
  • Knapp HR, Melly MA. Bactericidal effects of polyunsaturated fatty acids. J Infect Dis. 1986;154(1):84–94.
  • Bergsson G, Arnfinnsson J, Karlsson SM, et al. In vitro inactivation of Chlamydia trachomatis by fatty acids and monoglycerides. Antimicrob Agents Chemother. 1998;42(9):2290–2294.
  • Drake DR, Brogden KA, Dawson DV, et al. Thematic review series: skin lipids. Antimicrobial lipids at the skin surface. J Lipid Res. 2008;49(1):4–11.
  • Parsons JB, Rock CO. Is bacterial fatty acid synthesis a valid target for antibacterial drug discovery? Curr Opin Microbiol. 2011;14(5):544–549.
  • Yao J, Rock CO. How bacterial pathogens eat host lipids: implications for the development of fatty acid synthesis therapeutics. J Biol Chem. 2015;290(10):5940–5946.
  • Jackman J, Yoon B, Li D, et al. Nanotechnology formulations for antibacterial free fatty acids and monoglycerides. Molecules. 2016;21(3):305.
  • Petros RA, DeSimone JM. Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov. 2010;9(8):615.
  • Huh AJ, Kwon YJ. “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J Control Rel. 2011;156(2):128–145.
  • Urban P, Jose Valle-Delgado J, Moles E, et al. Nanotools for the delivery of antimicrobial peptides. CDT. 2012;13(9):1158–1172.
  • Nafee N, Husari A, Maurer CK, et al. Antibiotic-free nanotherapeutics: ultra-small, mucus-penetrating solid lipid nanoparticles enhance the pulmonary delivery and anti-virulence efficacy of novel quorum sensing inhibitors. J Control Rel. 2014;192:131–140.
  • Blair JM, Webber MA, Baylay AJ, et al. Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol. 2015;13(1):42.
  • Bernardos A, Piacenza E, Sancenón F, et al. Mesoporous silica‐based materials with bactericidal properties. Small. 2019;15(24):1900669–1906810.
  • Zhang L, Pornpattananangkul D, Hu C-M, et al. Development of nanoparticles for antimicrobial drug delivery. CMC. 2010;17(6):585–594.
  • Pinto-Alphandary H, Andremont A, Couvreur P. Targeted delivery of antibiotics using liposomes and nanoparticles: research and applications. Int J Antimicrob Agents. 2000;13(3):155–168.
  • Liu Y, Shi L, Su L, et al. Nanotechnology-based antimicrobials and delivery systems for biofilm-infection control. Chem Soc Rev. 2019;48(2):428–446.
  • Franklyne J, Mukherjee A, Chandrasekaran N. Essential oil micro‐and nanoemulsions: promising roles in antimicrobial therapy targeting human pathogens. Lett Appl Microbiol. 2016;63(5):322–334.
  • Sun CQ, O'Connor CJ, Roberton AM. Antibacterial actions of fatty acids and monoglycerides against Helicobacter pylori. FEMS Immunol Med Microbiol. 2003;36(1–2):9–17.
  • Bergsson G, Steingrímsson Ó, Thormar H. In vitro susceptibilities of Neisseria gonorrhoeae to fatty acids and monoglycerides. Antimicrob Agents Chemother. 1999;43(11):2790–2792.
  • Kanetsuna F. Bactericidal effect of fatty acids on mycobacteria, with particular reference to the suggested mechanism of intracellular killing. Microbiol Immunol. 1985;29(2):127–141.
  • Churchward CP, Alany RG, Kirk RS, et al. Prevention of ophthalmia neonatorum caused by Neisseria gonorrhoeae using a fatty acid-based formulation. MBio. 2017;8(4):e00534–17.
  • Yang D, Pornpattananangkul D, Nakatsuji T, et al. The antimicrobial activity of liposomal lauric acids against Propionibacterium acnes. Biomaterials. 2009;30(30):6035–6040.
  • Pornpattananangkul D, Fu V, Thamphiwatana S, et al. In vivo treatment of Propionibacterium acnes infection with liposomal lauric acids. Adv Healthc Mater. 2013;2(10):1322–1328.
  • Huang C-M, Chen C-H, Pornpattananangkul D, et al. Eradication of drug resistant Staphylococcus aureus by liposomal oleic acids. Biomaterials. 2011;32(1):214–221.
  • Obonyo M, Zhang L, Thamphiwatana S, et al. Antibacterial activities of liposomal linolenic acids against antibiotic-resistant Helicobacter pylori. Mol Pharm. 2012;9(9):2677–2685.
  • Jung SW, Thamphiwatana S, Zhang L, et al. Mechanism of antibacterial activity of liposomal linolenic acid against Helicobacter pylori. PloS one. 2015;10(3):e0116519.
  • Thamphiwatana S, Gao W, Obonyo M, et al. In vivo treatment of Helicobacter pylori infection with liposomal linolenic acid reduces colonization and ameliorates inflammation. Proc Natl Acad Sci USA. 2014;111(49):17600–17605.
  • Atashbeyk DG, Khameneh B, Tafaghodi M, et al. Eradication of methicillin-resistant Staphylococcus aureus infection by nanoliposomes loaded with gentamicin and oleic acid. Pharmaceut Biol. 2014;52(11):1423–1428.
  • Pushparaj Selvadoss P, Nellore J, Balaraman Ravindrran M, et al. Enhancement of antimicrobial activity by liposomal oleic acid-loaded antibiotics for the treatment of multidrug-resistant Pseudomonas aeruginosa. Artif Cells Nanomed Biotechnol. 2018;46(2):268–273.
  • Taylor EN, Kummer KM, Dyondi D, et al. Multi-scale strategy to eradicate Pseudomonas aeruginosa on surfaces using solid lipid nanoparticles loaded with free fatty acids. Nanoscale. 2014;6(2):825–832.
  • Das UN. Arachidonic acid and other unsaturated fatty acids and some of their metabolites function as endogenous antimicrobial molecules: a review. J Adv Res. 2018;11:57–66.
  • Seabra CL, Nunes C, Gomez-Lazaro M, et al. Docosahexaenoic acid loaded lipid nanoparticles with bactericidal activity against Helicobacter pylori. Int J Pharm. 2017;519(1–2):128–137.
  • Costantini L, Molinari R, Farinon B, et al. Impact of omega-3 fatty acids on the gut microbiota. IJMS. 2017;18(12):2645.
  • Yu H-N, Zhu J, Pan W-S, et al. Effects of fish oil with a high content of n-3 polyunsaturated fatty acids on mouse gut microbiota. Archiv Med Res. 2014;45(3):195–202.
  • Omolo CA, Kalhapure RS, Jadhav M, et al. Pegylated oleic acid: a promising amphiphilic polymer for nano-antibiotic delivery. Eur J Pharm Biopharm. 2017;112:96–108.
  • Mhule D, Kalhapure RS, Jadhav M, et al. Synthesis of an oleic acid based pH-responsive lipid and its application in nanodelivery of vancomycin. Int J Pharm. 2018;550(1–2):149–159.
  • Churchward CP, Alany RG, Snyder LA. Alternative antimicrobials: the properties of fatty acids and monoglycerides. Crit Rev Microbiol. 2018;44(5):561–570.
  • Fu X, Zhang M, Huang B, et al. Enhancement of antimicrobial activities by the food‐grade monolaurin microemulsion system. J Food Process Eng. 2009;32(1):104–111.
  • Zhang H, Shen Y, Weng P, et al. Antimicrobial activity of a food-grade fully dilutable microemulsion against Escherichia coli and Staphylococcus aureus. Int J Food Microbiol. 2009;135(3):211–215.
  • Hilmarsson H, Thormar H, Thrainsson J, et al. Effect of glycerol monocaprate (monocaprin) on broiler chickens: an attempt at reducing intestinal Campylobacter infection. Poult Sci. 2006;85(4):588–592.
  • Fu Y, Sarkar P, Bhunia AK, et al. Delivery systems of antimicrobial compounds to food. Trends Food Sci Technol. 2016;57:165–177.
  • Petra Š, Věra K, Iva H, et al. Formulation, antibacterial activity, and cytotoxicity of 1‐monoacylglycerol microemulsions. Eur J Lipid Sci Technol. 2014;116(4):448–457.
  • Neyts J, Kristmundsdóttir T, De Clercq E, et al. Hydrogels containing monocaprin prevent intravaginal and intracutaneous infections with HSV‐2 in mice: impact on the search for vaginal microbicides. J Med Virol. 2000;61(1):107–110.
  • Thorgeirsdóttir TÓ, Kjøniksen A-L, Knudsen KD, et al. Viscoelastic and structural properties of pharmaceutical hydrogels containing monocaprin. Eur J Pharm Biopharm. 2005;59(2):333–342.
  • Thorgeirsdottir T, Thormar H, Kristmundsdottir T. The influence of formulation variables on stability and microbicidal activity of monoglyceride monocaprin. J Drug Deliv Sci Technol. 2005;15(3):233–236.
  • Skulason S, Holbrook WP, Thormar H, et al. A study of the clinical activity of a gel combining monocaprin and doxycycline: a novel treatment for herpes labialis. J Oral Pathol Med. 2012;41(1):61–67.
  • Thormar H, Bergsson G, Gunnarsson E, et al. Hydrogels containing monocaprin have potent microbicidal activities against sexually transmitted viruses and bacteria in vitro. Sex Transm Infect. 1999;75(3):181–185.
  • Umerska A, Cassisa V, Matougui N, et al. Antibacterial action of lipid nanocapsules containing fatty acids or monoglycerides as co-surfactants. Eur J Pharm Biopharm. 2016;108:100–110.
  • Umerska A, Cassisa V, Bastiat G, et al. Synergistic interactions between antimicrobial peptides derived from plectasin and lipid nanocapsules containing monolaurin as a cosurfactant against Staphylococcus aureus. IJN. 2017;12:5687.
  • Rozenbaum RT, Su L, Umerska A, et al. Antimicrobial synergy of monolaurin lipid nanocapsules with adsorbed antimicrobial peptides against Staphylococcus aureus biofilms in vitro is absent in vivo. J Control Rel. 2019;293:73–83.
  • Lopes LQ, Santos CG, de Almeida Vaucher R, et al. Evaluation of antimicrobial activity of glycerol monolaurate nanocapsules against American foulbrood disease agent and toxicity on bees. Microb Pathog. 2016;97:183–188.
  • Lopes LQS, Santos CG, de Almeida Vaucher R, et al. Nanocapsules with glycerol monolaurate: effects on Candida albicans biofilms. Microb Pathog. 2016;97:119–124.
  • Chinatangkul N, Limmatvapirat C, Nunthanid J, et al. Design and characterization of monolaurin loaded electrospun shellac nanofibers with antimicrobial activity. Asian J Pharm Sci. 2018;13(5):459–471.
  • Sadiq S, Imran M, Habib H, et al. Potential of monolaurin based food-grade nano-micelles loaded with nisin Z for synergistic antimicrobial action against Staphylococcus aureus. LWT-Food Sci Technol. 2016;71:227–233.
  • Kaewmanee PC, Wongsatayanon B, Durand A. Encapsulation of bioactive compounds (monocaprin and monolaurin) into polymeric nanoparticles. MSF. 2018;916:147.
  • Lam AHC, Sandoval N, Wadhwa R, et al. Assessment of free fatty acids and cholesteryl esters delivered in liposomes as novel class of antibiotic. BMC Res Notes. 2016;9(1):337.
  • Banday MR, Farshori NN, Ahmad A, et al. Synthesis and characterization of novel fatty acid analogs of cholesterol: in vitro antimicrobial activity. Eur J Med Chem. 2010;45(4):1459–1464.
  • Los FC, Randis TM, Aroian RV, et al. Role of pore-forming toxins in bacterial infectious diseases. Microbiol Mol Biol Rev. 2013;77(2):173–207.
  • Titball RW. Bacterial phospholipases C. Microbiol Mol Biol Rev. 1993;57(2):347–366.
  • Wardenburg JB, Bae T, Otto M, et al. Poring over pores: α-hemolysin and Panton-Valentine leukocidin in Staphylococcus aureus pneumonia. Nat Med. 2007;13(12):1405.
  • Morton CJ, Sani M-A, Parker MW, et al. Cholesterol-dependent cytolysins: membrane and protein structural requirements for pore formation. Chem Rev. 2019;119(13):7721–7736.
  • Henry BD, Neill DR, Becker KA, et al. Engineered liposomes sequester bacterial exotoxins and protect from severe invasive infections in mice. Nat Biotechnol. 2015;33(1):81.
  • Fischer CL, Drake DR, Dawson DV, et al. Antibacterial activity of sphingoid bases and fatty acids against Gram-positive and Gram-negative bacteria. Antimicrob Agents Chemother. 2012;56(3):1157–1161.
  • Rice TC, Pugh AM, Seitz AP, et al. Sphingosine rescues aged mice from pulmonary pseudomonas infection. J Surg Res. 2017;219:354–359.
  • Seitz AP, Schumacher F, Baker J, et al. Sphingosine-coating of plastic surfaces prevents ventilator-associated pneumonia. J Mol Med. 2019;97(8):1195–1211.
  • Wehrmuller K. Occurrence and biological properties of sphingolipids-a review. CNF. 2007;3(2):161–173.
  • Baker JE, Boudreau RM, Seitz AP, et al. Sphingolipids and innate immunity: a new approach to infection in the post-antibiotic era? Surg Infect. 2018;19(8):792–803.
  • Pewzner‐Jung Y, Tabazavareh ST, Grassmé H, et al. Sphingoid long chain bases prevent lung infection by Pseudomonas aeruginosa. EMBO Mol Med. 2014;6(9):1205–1214.
  • Grassmé H, Henry B, Ziobro R, et al. β1-Integrin accumulates in cystic fibrosis luminal airway epithelial membranes and decreases sphingosine, promoting bacterial infections. Cell Host Microbe. 2017;21(6):707–718.e8.
  • Tabazavareh ST, Seitz A, Jernigan P, et al. Lack of sphingosine causes susceptibility to pulmonary Staphylococcus aureus infections in cystic fibrosis. Cell Physiol Biochem. 2016;38(6):2094–2102.
  • Cukkemane N, Bikker FJ, Nazmi K, et al. Anti‐adherence and bactericidal activity of sphingolipids against S treptococcus mutans. Eur J Oral Sci. 2015;123(4):221–227.
  • Possemiers S, Van Camp J, Bolca S, et al. Characterization of the bactericidal effect of dietary sphingosine and its activity under intestinal conditions. Int J Food Microbiol. 2005;105(1):59–70.
  • Wolfmeier H, Mansour SC, Liu LT, et al. Liposomal therapy attenuates dermonecrosis induced by community-associated methicillin-resistant Staphylococcus aureus by targeting α-type phenol-soluble modulins and α-hemolysin. EBioMedicine. 2018;33:211–217.
  • Laterre P-F, Colin G, Dequin P-F, et al. CAL02, a novel antitoxin liposomal agent, in severe pneumococcal pneumonia: a first-in-human, double-blind, placebo-controlled, randomised trial. Lancet Infect Dis. 2019;19(6):620–630.
  • Vlieghe P, Lisowski V, Martinez J, et al. Synthetic therapeutic peptides: science and market. Drug Discov Today. 2010;15(1–2):40–56.
  • Eckert R. Road to clinical efficacy: challenges and novel strategies for antimicrobial peptide development. Future Microbiol. 2011;6(6):635–651.
  • Shafer WM, Veal WL, Lee E-H, et al. Genetic organization and regulation of antimicrobial efflux systems possessed by Neisseria gonorrhoeae and Neisseria meningitidis. J Mol Microbiol Biotechnol. 2001;3(2):219–224.
  • Gao W, Chen Y, Zhang Y, et al. Nanoparticle-based local antimicrobial drug delivery. Adv Drug Deliv Rev. 2018;127:46–57.
  • Banat IM, Franzetti A, Gandolfi I, et al. Microbial biosurfactants production, applications and future potential. Appl Microbiol Biotechnol. 2010;87(2):427–444.
  • Merghni A, Dallel I, Noumi E, et al. Antioxidant and antiproliferative potential of biosurfactants isolated from Lactobacillus casei and their anti-biofilm effect in oral Staphylococcus aureus strains. Microbial Pathog. 2017;104:84–89.
  • Banat IM, De Rienzo MAD, Quinn GA. Microbial biofilms: biosurfactants as antibiofilm agents. Appl Microbiol Biotechnol. 2014;98(24):9915–9929.
  • de Araujo LV, Guimarães CR, da Silva Marquita RL, et al. Rhamnolipid and surfactin: anti-adhesion/antibiofilm and antimicrobial effects. Food Control. 2016;63:171–178.
  • Płaza G, Chojniak J, Banat I. Biosurfactant mediated biosynthesis of selected metallic nanoparticles. IJMS. 2014;15(8):13720–13737.
  • Mulligan CN. Recent advances in the environmental applications of biosurfactants. Curr Opin Colloid Interface Sci. 2009;14(5):372–378.
  • Gudiña EJ, Rangarajan V, Sen R, et al. Potential therapeutic applications of biosurfactants. Trends Pharmacol Sci. 2013;34(12):667–675.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.