255
Views
18
CrossRef citations to date
0
Altmetric
Original Articles

Multifunctional MIL-Cur@FC as a theranostic agent for magnetic resonance imaging and targeting drug delivery: in vitro and in vivo study

, , , , , & ORCID Icon show all
Pages 668-680 | Received 16 Sep 2019, Accepted 29 Dec 2019, Published online: 10 Jan 2020

References

  • Singh N, Karambelkar A, Gu L, et al. Bioresponsive mesoporous silica nanoparticles for triggered drug release. J Am Chem Soc. 2011;133:19582–19585.
  • Thapa B, Diaz-Diestra D, Santiago-Medina C, et al. T1- and T2-weighted magnetic resonance dual contrast by single core truncated cubic iron oxide nanoparticles with abrupt cellular internalization and immune evasion. ACS Appl Bio Mater. 2018;1:79–89.
  • Choi J-s, Lee J-H, Shin T-H, et al. Self-confirming “AND” logic nanoparticles for fault-free MRI. J Am Chem Soc. 2010;132:11015–11017.
  • Li F, Zhi D, Luo Y, et al. Core/shell Fe3O4/Gd2O3 nanocubes as T1–T2 dual modal MRI contrast agents. Nanoscale. 2016;8:12826–12833.
  • Li J, You J, Wu C, et al. T1–T2 molecular magnetic resonance imaging of renal carcinoma cells based on nano-contrast agents. Int J Nanomedicine. 2018;13:4607–4625.
  • Cheng K, Yang M, Zhang R, et al. Hybrid nanotrimers for dual T1 and T2-weighted magnetic resonance imaging. ACS Nano. 2014;8:9884–9896.
  • Bae KH, Kim YB, Lee Y, et al. Bioinspired synthesis and characterization of gadolinium-labeled magnetite nanoparticles for dual contrast T1- and T2-weighted magnetic resonance imaging. Bioconjug Chem. 2010;21:505–512.
  • Wang K, An L, Tian Q, et al. Gadolinium-labelled iron/iron oxide core/shell nanoparticles as T1–T2 contrast agent for magnetic resonance imaging. RSC Adv. 2018;8:26764–26770.
  • Wang X, Zhou Z, Wang Z, et al. Gadolinium embedded iron oxide nanoclusters as T1–T2 dual-modal MRI-visible vectors for safe and efficient siRNA delivery. Nanoscale. 2013;5:8098–8104.
  • Xue S, Zhang C, Yang Y, et al. 99mTc-labeled iron oxide nanoparticles for dual-contrast (T1/T2) magnetic resonance and dual-modality imaging of tumor angiogenesis. J Biomed Nanotechnol. 2015;11:1027–1037.
  • Sharma VK, Alipour A, Soran-Erdem Z, et al. Highly monodisperse low-magnetization magnetite nanocubes as simultaneous T1–T2 MRI contrast agents. Nanoscale. 2015;7:10519–10526.
  • Huang J, Wang L, Zhong X, et al. Facile non-hydrothermal synthesis of oligosaccharide coated sub-5 nm magnetic iron oxide nanoparticles with dual MRI contrast enhancement effects. J Mater Chem B. 2014;2:5344–5351.
  • Férey G, Mellot-Draznieks C, Serre C, et al. Crystallized frameworks with giant pores: are there limits to the possible? Acc Chem Res. 2005;38:217–225.
  • Horcajada P, Chalati T, Serre C, et al. Porous metal–organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nature Mater. 2010;9:172–178.
  • Cai W, Chu CC, Liu G, et al. Metal–organic framework‐based nanomedicine platforms for drug delivery and molecular imaging. Small. 2015;11:4806–4822.
  • Zhu Y-D, Chen S-P, Zhao H, et al. PPy@ MIL-100 nanoparticles as a pH- and near-IR-irradiation-responsive drug carrier for simultaneous photothermal therapy and chemotherapy of cancer cells. ACS Appl Mater Interfaces. 2016;8:34209–34217.
  • Gao X, Zhai M, Guan W, et al. Controllable synthesis of a smart multifunctional nanoscale metal–organic framework for magnetic resonance/optical imaging and targeted drug delivery. ACS Appl Mater Interfaces. 2017;9:3455–3462.
  • Cai W, Gao H, Chu C, et al. Engineering phototheranostic nanoscale metal–organic frameworks for multimodal imaging-guided cancer therapy. ACS Appl Mater Interfaces. 2017;9:2040–2051.
  • Alexis F, Pridgen E, Molnar LK, et al. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm. 2008;5:505–515.
  • Xiao K, Li Y, Luo J, et al. The effect of surface charge on in vivo biodistribution of PEG-oligocholic acid based micellar nanoparticles. Biomaterials. 2011;32:3435–3446.
  • Thorek DL, Tsourkas A. Size, charge and concentration dependent uptake of iron oxide particles by non-phagocytic cells. Biomaterials. 2008;29:3583–3590.
  • Daniel M-C, Tsvetkova IB, Quinkert ZT, et al. Role of surface charge density in nanoparticle-templated assembly of bromovirus protein cages. ACS Nano. 2010;4:3853–3860.
  • Zhu L, Torchilin VP. Stimulus-responsive nanopreparations for tumor targeting. Integr Biol. 2013;5:96–107.
  • Zhu C-L, Lu C-H, Song X-Y, et al. Bioresponsive controlled release using mesoporous silica nanoparticles capped with aptamer-based molecular gate. J Am Chem Soc. 2011;133:1278–1281.
  • Roomi M, Monterrey J, Kalinovsky T, et al. Patterns of MMP-2 and MMP-9 expression in human cancer cell lines. Oncol Rep. 2009;21:1323–1333.
  • He C, Hu Y, Yin L, et al. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials. 2010;31:3657–3666.
  • Nicolas J, Mura S, Brambilla D, et al. Design, functionalization strategies and biomedical applications of targeted biodegradable/biocompatible polymer-based nanocarriers for drug delivery. Chem Soc Rev. 2013;42:1147–1235.
  • Shanavas A, Sasidharan S, Bahadur D, et al. Magnetic core–shell hybrid nanoparticles for receptor targeted anti-cancer therapy and magnetic resonance imaging. J Colloid Interface Sci. 2017;486:112–120.
  • Dehghani S, Alam NR, Shahriarian S, et al. The effect of size and aspect ratio of Fe-MIL-88B-NH2 metal–organic frameworks on their relaxivity and contrast enhancement properties in MRI: in vitro and in vivo studies. J Nanopart Res. 2018;20:278–294.
  • Daryasari MP, Akhgar MR, Mamashli F, et al. Chitosan-folate coated mesoporous silica nanoparticles as a smart and pH-sensitive system for curcumin delivery. RSC Adv. 2016;6:105578–105588.
  • Zhang N-n, Yu R-s, Xu M, et al. Visual targeted therapy of hepatic cancer using homing peptide modified calcium phosphate nanoparticles loading doxorubicin guided by T1 weighted MRI. Nanomedicine. 2018;14:2167–2178.
  • Pham MH, Vuong GT, Vu AT, et al. Novel route to size-controlled Fe–MIL-88B–NH2 metal–organic framework nanocrystals. Langmuir. 2011;27:15261–15267.
  • Chen Y, Ai K, Liu J, et al. Multifunctional envelope-type mesoporous silica nanoparticles for pH-responsive drug delivery and magnetic resonance imaging. Biomaterials. 2015;60:111–120.
  • Hou S, Wu Y-n, Feng L, et al. Green synthesis and evaluation of an iron-based metal–organic framework MIL-88B for efficient decontamination of arsenate from water. Dalton Trans. 2018;47:2222–2231.
  • Sivakumar P, Priyatharshni S, Nagashanmugam K, et al. Chitosan capped nanoscale Fe-MIL-88B-NH2 metal–organic framework as drug carrier material for the pH responsive delivery of doxorubicin. Mater Res Express. 2017;4:85023.
  • Liu Y, Wang W, Yang J, et al. pH-sensitive polymeric micelles triggered drug release for extracellular and intracellular drug targeting delivery. Asian J Pharm. 2013;8:159–167.
  • Hu F-Q, Liu L-N, Du Y-Z, et al. Synthesis and antitumor activity of doxorubicin conjugated stearic acid-g-chitosan oligosaccharide polymeric micelles. Biomaterials. 2009;30:6955–6963.
  • Bao Y, Sherwood J, Sun Z. Magnetic iron oxide nanoparticles as T1 contrast agents for magnetic resonance imaging. J Mater Chem C. 2018;6:1280–1290.
  • Rouquerol J, Avnir D, Fairbridge C, et al. Recommendations for the characterization of porous solids (technical report). Pure Appl Chem. 1994;66:1739–1758.
  • Song XR, Li SH, Dai J, et al. Polyphenol‐inspired facile construction of smart assemblies for ATP‐ and pH‐responsive tumor MR/Optical imaging and photothermal therapy. Small. 2017;13:1603997.
  • Pan W, Yang H, Zhang T, et al. Dual-targeted nanocarrier based on cell surface receptor and intracellular mRNA: an effective strategy for cancer cell imaging and therapy. Anal Chem. 2013;85:6930–6935.
  • Paulmurugan R, Bhethanabotla R, Mishra K, et al. Folate receptor-targeted polymeric micellar nanocarriers for delivery of orlistat as a repurposed drug against triple-negative breast cancer. Mol Cancer Ther. 2016;15:221–231.
  • Ghorbani M, Bigdeli B, Jalili-Baleh L, et al. Curcumin-lipoic acid conjugate as a promising anticancer agent on the surface of gold-iron oxide nanocomposites: a pH-sensitive targeted drug delivery system for brain cancer theranostics. Eur J Pharm Sci. 2018;114:175–188.
  • Zhu W, Cromie MM, Cai Q, et al. Curcumin and vitamin E protect against adverse effects of benzo [a] pyrene in lung epithelial cells. PLoS One. 2014;9:e92992.
  • Debnath S, Saloum D, Dolai S, et al. Dendrimer-curcumin conjugate: a water soluble and effective cytotoxic agent against breast cancer cell lines. Anticancer Agents Med Chem. 2013;13:1531–1539.
  • Chakraborty S, Karmenyan A, Tsai JW, et al. Inhibitory effects of curcumin and cyclocurcumin in 1-methyl-4-phenylpyridinium (MPP+) induced neurotoxicity in differentiated PC12 cells. Sci Rep. 2017;7:16977.
  • Zhang Y, Yang C, Wang W, et al. Co-delivery of doxorubicin and curcumin by pH-sensitive prodrug nanoparticle for combination therapy of cancer. Sci Rep. 2016;6:21225–21237.
  • Zhang Y, Yang M, Park JH, et al. A surface‐charge study on cellular‐uptake behavior of F3‐peptide‐conjugated iron oxide nanoparticles. Small. 2009;5:1990–1996.
  • Bondar OV, Saifullina D, Shakhmaeva I, et al. Monitoring of the zeta potential of human cells upon reduction in their viability and interaction with polymers. Acta Nat. 2012;4:12.
  • Li L, Gao F, Jiang W, et al. Folic acid-conjugated superparamagnetic iron oxide nanoparticles for tumor-targeting MR imaging. Drug Deliv. 2016;23:1726–1733.
  • Hu C-M, Zhang L. Therapeutic nanoparticles to combat cancer drug resistance. Curr Drug Metab. 2009;10:836–841.
  • Jo DH, Kim JH, Lee TG, et al. Size, surface charge, and shape determine therapeutic effects of nanoparticles on brain and retinal diseases. Nanomedicine. 2015;11:1603–1611.
  • Huang L, Ao L, Hu D, et al. Magneto-plasmonic nanocapsules for multimodal-imaging and magnetically guided combination cancer therapy. Chem Mater. 2016;28:5896–5904.
  • Ao L, Wang B, Liu P, et al. A folate-integrated magnetic polymer micelle for MRI and dual targeted drug delivery. Nanoscale. 2014;6:10710–10716.
  • Peng YK, Tsang SCE, Chou PT. Chemical design of nanoprobes for T1-weighted magnetic resonance imaging. Mater Today. 2016;19:336–348.
  • Gabizon A, Horowitz AT, Goren D, et al. In vivo fate of folate-targeted polyethylene-glycol liposomes in tumor-bearing mice. Clin Cancer Res. 2003;9:6551–6559.
  • Kakkar V, Singh S, Singla D, et al. Exploring solid lipid nanoparticles to enhance the oral bioavailability of curcumin. Mol Nutr Food Res. 2011;55:495–503.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.