350
Views
7
CrossRef citations to date
0
Altmetric
Review Articles

Molecular imaging of myocardial necrosis: an updated mini-review

ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon
Pages 565-573 | Received 09 Oct 2019, Accepted 29 Jan 2020, Published online: 09 Feb 2020

References

  • Roth GA, Johnson C, Abajobir A, et al. Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015. J Am Coll Cardiol. 2017;70(1):1–25.
  • Mozaffarian D. Global scourge of cardiovascular disease: time for health care systems reform and precision population health. J Am Coll Cardiol. 2017;70(1):26–28.
  • Anderson JL, Morrow DA. Acute myocardial infarction. N Engl J Med. 2017;376(21):2053–2064.
  • Reed GW, Rossi JE, Cannon CP. Acute myocardial infarction. Lancet. 2017;389(10065):197–210.
  • Heusch G, Gersh BJ. The pathophysiology of acute myocardial infarction and strategies of protection beyond reperfusion: a continual challenge. Eur Heart J. 2017;38(11):774–784.
  • Re DPD, Amgalan D, Linkermann A, et al. Fundamental mechanisms of regulated cell death and implications for heart disease. Physiol Rev. 2019;99:1765–1817.
  • Ibáñez B, Heusch G, Ovize M, et al. Evolving therapies for myocardial ischemia/reperfusion injury. J Am Coll Cardiol. 2015;65(14):1454–1471.
  • Ma S, Wang Y, Chen Y, et al. The role of the autophagy in myocardial ischemia/reperfusion injury. Biochim Biophys Acta. 2015;1852(2):271–276.
  • Chiong M, Wang ZV, Pedrozo Z, et al. Cardiomyocyte death: mechanisms and translational implications. Cell Death Dis. 2011;2(12):e244–e244.
  • Davidson SM, Ferdinandy P, Andreadou I, et al. Multitarget strategies to reduce myocardial ischemia/reperfusion injury: JACC review topic of the week. J Am Coll Cardiol. 2019;73(1):89–99.
  • Flotats A, Carrio I. Non-invasive in vivo imaging of myocardial apoptosis and necrosis. Eur J Nucl Med Mol Imaging. 2003;30(4):615–630.
  • Jivraj N, Phinikaridou A, Shah AM, et al. Molecular imaging of myocardial infarction. Basic Res Cardiol. 2014;109(1):397.
  • Shekhar A, Heeger P, Reutelingsperger C, et al. Targeted imaging for cell death in cardiovascular disorders. JACC Cardiovasc Imaging. 2018;11(3):476–493.
  • Boutagy NE, Feher A, Alkhalil I, et al. Molecular imaging of the heart. Compr Physiol. 2019;9(2):477–533.
  • Golestani R, Wu C, Tio RA, et al. Small-animal SPECT and SPECT/CT: application in cardiovascular research. Eur J Nucl Med Mol Imaging. 2010;37(9):1766–1777.
  • De Saint-Hubert M, Prinsen K, Mortelmans L, et al. Molecular imaging of cell death. Methods. 2009;48(2):178–187.
  • Cona MM, Oyen R, Ni Y. Necrosis avidity of organic compounds: a natural phenomenon with exploitable theragnostic potentials. CMC. 2015;22(15):1829–1849.
  • Zhang D, Gao M, Jin Q, et al. Updated developments on molecular imaging and therapeutic strategies directed against necrosis. Acta Pharm Sin B. 2019;9(3):455–468.
  • James ML, Gambhir SS. A molecular imaging primer: modalities, imaging agents, and applications. Physiol Rev. 2012;92(2):897–965.
  • Skinner JS, Smeeth L, Kendall JM, et al. NICE guidance. Chest pain of recent onset: assessment and diagnosis of recent onset chest pain or discomfort of suspected cardiac origin. Heart. 2010;96(12):974–978.
  • Fox K, Angeles Alonso Garcia M, Ardissino D, et al. Guidelines on the management of stable angina pectoris: executive summary: The Task Force on the Management of Stable Angina Pectoris of the European Society of Cardiology. Eur Heart J. 2006;27(11):1341–1381.
  • Beller GA, Heede RC. SPECT imaging for detecting coronary artery disease and determining prognosis by noninvasive assessment of myocardial perfusion and myocardial viability. J Cardiovasc Trans Res. 2011;4(4):416–424.
  • Underwood SR, Anagnostopoulos C, Cerqueira M, et al. Myocardial perfusion scintigraphy: the evidence. Eur J Nucl Med Mol Imaging. 2004;31(2):261–291.
  • Nudi F, Di Belardino N, Pinto A, et al. Assessment of the fate of myocardial necrosis by serial myocardial perfusion imaging. J Nucl Cardiol. 2018;25(2):496–505.
  • Morrison AR, Sinusas AJ. Advances in radionuclide molecular imaging in myocardial biology. J Nucl Cardiol. 2010;17(1):116–134.
  • Ni YC, Bormans G, Chen F, et al. Necrosis avid contrast agents: functional similarity versus structural diversity. Invest Radiol. 2005;40(8):526–535.
  • Ni Y. Metalloporphyrins and functional analogues as MRI contrast agents. CMIR. 2008;4(2):96–112.
  • Ni Y, Huyghe D, Verbeke K, et al. First preclinical evaluation of mono-[123I]iodohypericin as a necrosis-avid tracer agent. Eur J Nucl Med Mol Imaging. 2006;33(5):595–601.
  • Fonge H, Vunckx K, Wang H, et al. Non-invasive detection and quantification of acute myocardial infarction in rabbits using mono-[123I]iodohypericin microSPECT. Eur Heart J. 2007;29(2):260–269.
  • Feng Y, Cona MM, Vunckx K, et al. Detection and quantification of acute reperfused myocardial infarction in rabbits using DISA-SPECT/CT and 3.0 T cardiac MRI. Int J Cardiol. 2013;168(4):4191–4198.
  • Cona MM, Feng Y, Li Y, et al. Comparative study of iodine-123-labeled-hypericin and Tc-99m-labeled-hexakis [2-methoxyisobutylisonitril] in a rabbit model of myocardial infarction. J Cardiovasc Pharm. 2013;62(3):304–311.
  • Li J, Zhang J, Yang S, et al. Synthesis and preclinical evaluation of radioiodinated hypericin dicarboxylic acid as a necrosis avid agent in rat models of induced hepatic, muscular, and myocardial necroses. Mol Pharm. 2016;13(1):232–240.
  • Duan X, Yin Z, Jiang C, et al. Radioiodinated hypericin disulfonic acid sodium salts as a DNA-binding probe for early imaging of necrotic myocardium. Eur J Pharm Biopharm. 2017;117:151–159.
  • Ishikawa M, Hashimoto Y. Improvement in aqueous solubility in small molecule drug discovery programs by disruption of molecular planarity and symmetry. J Med Chem. 2011;54(6):1539–1554.
  • Lewin G, Maciuk A, Moncomble A, et al. Enhancement of the water solubility of flavone glycosides by disruption of molecular planarity of the aglycone moiety. J Nat Prod. 2013;76(1):8–12.
  • Chen Z, Baumeister U, Tschierske C, et al. Effect of core twisting on self-assembly and optical properties of perylene bisimide dyes in solution and columnar liquid crystalline phases. Chem Eur J. 2007;13(2):450–465.
  • Chen Z, Lohr A, Saha-Moeller CR, et al. Self-assembled pi-stacks of functional dyes in solution: structural and thermodynamic features. Chem Soc Rev. 2009;38(2):564–584.
  • Jin Q, Zhao J, Gao M, et al. Evaluation of necrosis avidity and potential for rapid imaging of necrotic myocardium of radioiodinated hypocrellins. Mol Imaging Biol. 2018;20(4):551–561.
  • Wang Q, Yang S, Jiang C, et al. Discovery of radioiodinated monomeric anthraquinones as a novel class of necrosis avid agents for early imaging of necrotic myocardium. Sci Rep. 2016;6(1):21341.
  • Su C, Zhang D, Bao N, et al. Evaluation of radioiodinated 1, 4-naphthoquinones as necrosis avid agents for rapid myocardium necrosis imaging. Mol Imaging Biol. 2018;20(1):74–84.
  • Luo Q, Jin Q, Su C, et al. Radiolabeled rhein as small-molecule necrosis avid agents for imaging of necrotic myocardium. Anal Chem. 2017;89(2):1260–1266.
  • Liang J, Luo Q, Zhang D, et al. SPECT imaging of treatment-related tumor necrosis using technetium-99m-labeled rhein. Mol Imaging Biol. 2019;21(4):660–668.
  • Jin Q, Jiang C, Gao M, et al. Target exploration of rhein as a small-molecule necrosis avid agent by post-treatment click modification. New J Chem. 2019;43(16):6121–6125.
  • Zhang D, Huang D, Ji Y, et al. Experimental evaluation of radioiodinated sennoside B as a necrosis-avid tracer agent. J Drug Target. 2015;23(2):180–190.
  • Jiang C, Gao M, Li Y, et al. Exploring diagnostic potentials of radioiodinated sennidin A in rat model of reperfused myocardial infarction. Int J Pharm. 2015;495(1):31–40.
  • Li L, Zhang D, Yang S, et al. Effects of glycosylation on biodistribution and imaging quality of necrotic myocardium of iodine-131-labeled sennidins. Mol Imaging Biol. 2016;18(6):877–886.
  • Ma L, Cai L, Jin Q, et al. Evaluation of necrosis avidity of radioiodinated 5-hydroxytryptophan and its potential applications in myocardial infarction imaging. Chinese Chem Lett. 2019;30(1):83–86.
  • Park D, Don AS, Massamiri T, et al. Noninvasive imaging of cell death using an Hsp90 ligand. J Am Chem Soc. 2011;133(9):2832–2835.
  • Tahara N, Zandbergen HR, de Haas HJ, et al. Noninvasive molecular imaging of cell death in myocardial infarction using 111In-GSAO. Sci Rep. 2015;4(1):6826.
  • Yamaki T, de Haas HJ, Tahara N, et al. Cardioprotection by minocycline in a rabbit model of ischemia/reperfusion injury: Detection of cell death by in vivo 111In-GSAO SPECT. J Nucl Cardiol. 2018;25(1):94–100.
  • Ji A-Y, Jin Q-M, Zhang D-J, et al. Novel 18F-labeled 1-hydroxyanthraquinone derivatives for necrotic myocardium imaging. ACS Med Chem Lett. 2017;8(2):191–195.
  • Khaw BA, Nakazawa A, Odonnell SM, et al. Avidity of technetium 99m glucarate for the necrotic myocardium: in vivo and in vitro assessment. J Nucl Cardiol. 1997;4(4):283–290.
  • Narula J, Petrov A, Pak KY, et al. Very early noninvasive detection of acute experimental nonreperfused myocardial infarction with Tc-99m-labeled glucarate. Circulation. 1997;95(6):1577–1584.
  • Beanlands RSB, Ruddy TD, Bielawski L, et al. Differentiation of myocardial ischemia and necrosis by technetium 99m glucaric acid kinetics. J Nucl Cardiol. 1997;4(4):274–282.
  • Mariani G, Villa G, Rossettin PF, et al. Detection of acute myocardial infarction by 99mTc-labeled D-glucaric acid imaging in patients with acute chest pain. J Nucl Med. 1999;40(11):1832–1839.
  • Johnson LL, Schofield L, Mastrofrancesco P, et al. Technetium-99m glucarate uptake in a swine model of limited flow plus increased demand. J Nucl Cardiol. 2000;7(6):590–598.
  • Khaw B, Silva J, Petrov A, et al. Indium 111 antimyosin and Tc-99m glucaric acid for noninvasive identification of oncotic and apoptotic myocardial necrosis. J Nucl Cardiol. 2002;9(5):471–481.
  • Okada DR, Johnson G, Liu Z, et al. Early detection of infarct in reperfused canine myocardium using 99mTc-glucarate. J Nucl Med. 2004;45(4):655–664.
  • Liu Z, Barrett HH, Stevenson GD, et al. High-resolution imaging with 99mTc-glucarate for assessing myocardial injury in rat heart models exposed to different durations of ischemia with reperfusion. J Nucl Med. 2004;45(7):1251–1259.
  • Johnson G, Okada CC, Hocherman SD, et al. 99mTc-glucarate imaging for the early detection of infarct in partially reperfused canine myocardium. Eur J Nucl Med Mol Imaging. 2006;33(3):319–328.
  • Liu Z, Barrett HH, Stevenson GD, et al. Evaluating the protective role of ischaemic preconditioning in rat hearts using a stationary small-animal SPECT imager and 99mTc-glucarate. Nucl Med Commun. 2008;29(2):120–128.
  • Okada DR, Liu Z, Johnson G, et al. 99mTc-glucarate kinetics differentiate normal, stunned, hibernating, and nonviable myocardium in a perfused rat heart model. Eur J Nucl Med Mol Imaging. 2010;37(10):1909–1917.
  • Houson HA, Nkepang GN, Hedrick AF, et al. Imaging of isoproterenol-induced myocardial injury with 18F labeled fluoroglucaric acid in a rat model. Nucl Med Biol. 2018;59:9–15.
  • Buckert D, Kelle S, Buss S, et al. Left ventricular ejection fraction and presence of myocardial necrosis assessed by cardiac magnetic resonance imaging correctly risk stratify patients with stable coronary artery disease: a multi-center all-comers trial. Clin Res Cardiol. 2017;106(3):219–229.
  • Schuster A, Hor KN, Kowallick JT, et al. Cardiovascular magnetic resonance myocardial feature tracking: concepts and clinical applications. Circ Cardiovasc Imaging. 2016;9(4):e004077.
  • Ni Y. MR contrast agents for cardiac imaging. In: Bogaert J, Dymarkowski S, Taylor AM, et al., editors. Clinical Cardiac MRI. Berlin, Heidelberg: Springer Berlin Heidelberg; 2012. p. 31–51.
  • Barkhausen J, Ebert W, Debatin JF, et al. Imaging of myocardial infarction: comparison of magnevist and gadophrin-3 in rabbits. J Am Coll Cardiol. 2002;39(8):1392–1398.
  • Lee SS, Goo HW, Park SB, et al. MR imaging of reperfused myocardial infarction: comparison of necrosis-specific and intravascular contrast agents in a cat model. Radiology. 2003;226(3):739–747.
  • Choi SH, Lee SS, Choi SI, et al. Occlusive myocardial infarction: investigation of bis-Gadolinium mesoporphyrins–enhanced T1-weighted MR imaging in a cat model. Radiology. 2001;220(2):436–440.
  • Ni Y, Dymarkowski S, Chen F, et al. Occlusive myocardial infarction enhanced or not enhanced with necrosis-avid contrast agents at MR imaging. Radiology. 2002;225(2):603–605.
  • Pislaru SV, Ni Y, Pislaru C, et al. Noninvasive measurements of infarct size after thrombolysis with a necrosis-avid MRI contrast agent. Circulation. 1999;99(5):690–696.
  • Saeed M, Bremerich J, Wendland MF, et al. Reperfused myocardial infarction as seen with use of necrosis-specific versus standard extracellular MR contrast media in rats. Radiology. 1999;213(1):247–257.
  • Choi SI, Choi SH, Kim ST, et al. Irreversibly damaged myocardium at MR imaging with a necrotic tissue-specific contrast agent in a cat model. Radiology. 2000;215(3):863–868.
  • Saeed M, Lund G, Wendland MF, et al. Magnetic resonance characterization of the peri-infarction zone of reperfused myocardial infarction with necrosis-specific and extracellular nonspecific contrast media. Circulation. 2001;103(6):871–876.
  • Ni Y, Pislaru C, Bosmans H, et al. Intracoronary delivery of Gd-DTPA and Gadophrin-2 for determination of myocardial viability with MR imaging. Eur Radiol. 2001;11(5):876–883.
  • Dymarkowski S, Ni Y, Miao Y, et al. Value of T2-weighted MRI early after myocardial infarction in dogs: comparison with bis-gadolinium-mesoporphyrin enhanced T1-weighted MRI and functional data from cine MRI. Invest Radiol. 2002;37(2):77–85.
  • Ni Y, Cresens E, Adriaens P, et al. Necrosis-avid contrast agents: introducing nonporphyrin species. Acad Radiol. 2002;9(1):S98–S101.
  • Jin J, Teng G, Feng Y, et al. Magnetic resonance imaging of acute reperfused myocardial infarction: intraindividual comparison of ECIII-60 and Gd-DTPA in a swine model. Cardiovasc Intervent Radiol. 2007;30(2):248–256.
  • Saab-Ismail NH, Simor T, Gaszner B, et al. Synthesis and in vivo evaluation of new contrast agents for cardiac MRI. J Med Chem. 1999;42(15):2852–2861.
  • Simor T, Gaszner B, Oshinski JN, et al. Gd(ABE-DTTA)-enhanced cardiac MRI for the diagnosis of ischemic events in the heart. J Magn Reson Imaging. 2005;21(5):536–545.
  • Kiss P, Suranyi P, Simor T, et al. In vivo R1-enhancement mapping of canine myocardium using ceMRI with Gd(ABE-DTTA) in an acute ischemia-reperfusion model. J Magn Reson Imaging. 2006;24(3):571–579.
  • Surányi P, Kiss P, Ruzsics B, et al. In vivo myocardial tissue kinetics of Gd(ABE-DTTA), a tissue-persistent contrast agent. Magn Reson Med. 2007;58(1):55–64.
  • Ruzsics B, Surányi P, Kiss P, et al. Gd(ABE-DTTA), a novel contrast agent, at the MRI-effective dose shows absence of deleterious physiological effects in dogs. Pharmacology. 2006;77(4):188–194.
  • Surányi P, Kiss P, Brott BC, et al. Percent infarct mapping: an R1-map-based CE-MRI method for determining myocardial viability distribution. Magn Reson Med. 2006;56(3):535–545.
  • Ruzsics B, Surányi P, Kiss P, et al. Head-to-head comparison between delayed enhancement and percent infarct mapping for assessment of myocardial infarct size in a canine model. J Magn Reson Imaging. 2008;28(6):1386–1392.
  • Kirschner R, Toth L, Varga-Szemes A, et al. Differentiation of acute and four-week old myocardial infarct with Gd(ABE-DTTA)-enhanced CMR. J Cardiovasc Magn Reson. 2010;12(1):22.
  • Kirschner R, Varga-Szemes A, Simor T, et al. Acute infarct selective MRI contrast agent. Int J Cardiovasc Imaging. 2012;28(2):285–293.
  • Varga-Szemes A, Kiss P, Rab A, et al. In vitro longitudinal relaxivity profile of Gd (ABE-DTTA), an investigational magnetic resonance imaging contrast agent. PLoS One. 2016;11(2):e0149260.
  • Huang S, Chen HH, Yuan H, et al. Molecular MRI of acute necrosis with a novel DNA-binding Gadolinium chelate: kinetics of cell death and clearance in infarcted myocardium. Circ Cardiovasc Imaging. 2011;4(6):729–737.
  • Cho H, Guo Y, Sosnovik DE, et al. Imaging DNA with fluorochrome bearing metals. Inorg Chem. 2013;52(21):12216–12222.
  • Chen HH, Yuan H, Cho H, et al. Theranostic nucleic acid binding nanoprobe exerts anti-inflammatory and cytoprotective effects in ischemic injury. Theranostics. 2017;7(4):814–825.
  • Gallagher FA, Kettunen MI, Hu D-E, et al. Production of hyperpolarized [1, 4-13C2]malate from [1, 4-13C2]fumarate is a marker of cell necrosis and treatment response in tumors. Proc Natl Acad Sci U S A. 2009;106(47):19801–19806.
  • Clatworthy MR, Kettunen MI, Hu D-E, et al. Magnetic resonance imaging with hyperpolarized [1, 4-13C2]fumarate allows detection of early renal acute tubular necrosis. Proc Natl Acad Sci U S A. 2012;109(33):13374–13379.
  • Miller JJ, Lau AZ, Nielsen PM, et al. Hyperpolarized [1, 4-13C2]fumarate enables magnetic resonance-based imaging of myocardial necrosis. JACC Cardiovasc Imaging. 2018;11(11):1594–1606.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.