457
Views
14
CrossRef citations to date
0
Altmetric
Original Article

Influences of different sugar ligands on targeted delivery of liposomes

, , , , , , , & show all
Pages 789-801 | Received 09 Jan 2020, Accepted 15 Mar 2020, Published online: 13 Apr 2020

References

  • Kouchakzadeh H, Soudi T, Aghda NH, et al. Shojaosadati, ligand-modified biopolymeric nanoparticles as efficient tools for targeted cancer therapy. Curr Pharm Des. 2017;23(35):5336–5348.
  • Santos AO, Da Silva LC, Bimbo LM, et al. Deign of peptide-targeted liposomes containing nucleic acids. Biochim Biophys Acta. 2010;1798(3):433–441.
  • Mueckler M, Caruso C, Baldwin Maria Panico SA, et al. Sequence and structure of a human glucose transporter. Science. 1985;229(4717):941–945.
  • Lee EE, Ma J, Sacharidou A, et al. A protein kinase C phosphorylation motif in GLUT1 affects glucose transport and is mutated in GLUT1 deficiency syndrome. Mol Cell. 2015;58(5):845–853.
  • Macheda ML, Rogers S, Best JD. Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer. J Cell Physiol. 2005;202(3):654–662.
  • Amann T, Hellerbrand C. GLUT1 as a therapeutic target in hepatocellular Carcinoma. Expert Opin. Ther Targets. 2009;13(12):1411–1427.
  • Shim BY, Jung JH, Lee KM, et al. Glucose transporter 1 (GLUT1) of anaerobic glycolysis as predictive and prognostic values in neoadjuvant chemoradiotherapy and laparoscopic surgery for locally advanced rectal cancer. Int J Colorectal Dis. 2013;28(3):375–383.
  • Ramani P, Headford A, May MT. GLUT1 protein expression correlates with unfavourable histologic category and high risk in patients with neuroblastic tumours. Virchows Arch. 2013;462(2):203–209.
  • Flavahan WA, Wu Q, Hitomi M, et al. Brain tumor initiating cells adapt to restricted nutrition through preferential glucose uptake. Nat Neurosci. 2013;16(10):1373–1382.
  • Airley RE, Mobasheri A. Hypoxic regulation of glucose transport, anaerobic metabolism and angiogenesis in cancer: novel pathways and targets for anticancer therapeutics. Chemotherapy. 2007;53(4):233–256.
  • Calvaresi EC, Hergenrother PJ. Glucose conjugation for the specific targeting and treatment of cancer. Chem Sci. 2013;4(6):2319–2333.
  • Wu M, Li H, Liu R, et al. Galactose conjugated platinum(II) complex targeting the Warburg effect for treatment of non-small cell lung cancer and colon cancer. Eur J Med Chem. 2016; 110:32–42.
  • Ma J, Liu H, Xi Z, et al. Protected and de-protected Platinum(IV) glycoconjugates with GLUT1 and OCT2-mediated selective cancer targeting: demonstrated enhanced transporter-mediated cytotoxic properties in vitro and in vivo. Front Chem. 2018; 6:386–400.
  • Liu P, Lu Y, Gao X, et al. Highly water-soluble platinum(II) complexes as GLUT substrates for targeted therapy: improved anticancer efficacy and transporter-mediated cytotoxic properties. Chem Commun. 2013;49(24):2421–2423.
  • Li H, Gao X, Liu R, et al. Glucose conjugated platinum (II) complex: antitumor superiority to oxaliplatin, combination effect and mechanism of action. Eur J Med Chem. 2015; 101:400–408.
  • Mu LM, Wu JS, Xie HJ, et al. The use of a new functional glucose conjugate material, TPGS1000-Glu, in treatment of brain glioma by incorporating into epirubicin liposomes. J Chin Pharm Sci. 2016;25:266–274.
  • Hao ZF, Cui YX, Li MH, et al. Liposomes modified with P-aminophenyl-alpha-D-mannopyranoside: a carrier for targeting cerebral functional regions in mice. Eur J Pharm Biopharm. 2013;84(3):505–516.
  • Ying X, Wen H, Lu WL, et al. Dual-targeting daunorubicin liposomes improve the therapeutic efficacy of brain glioma in animals. J Control Release. 2010;141(2):183–192.
  • Sun L, Zeng X, Yan C, et al. Crystal structure of a bacterial homologue of glucose transporters GLUT1-4. Nature. 2012;490(7420):361–366.
  • Quistgaard EM, Low C, Moberg P, et al. Structural basis for substrate transport in the GLUT-homology family of monosaccharide transporters. Nat Struct Mol Biol. 2013;20(6):766–768.
  • Minnelli C, Cianfruglia L, Laudadio E, et al. Selective induction of apoptosis in MCF7 cancer-cell by targeted liposomes functionalized with mannose-6-phosphate. J Drug Targeting. 2018;26(3):242–251.
  • Alcaraz ML, Peng L, Klotz P, et al. Synthesis and properties of photoactivatable phospholipid derivatives designed to probe the membrane-associate domains of proteins. J Org Chem. 1996;61(1):192–201.
  • Baer BE, Maurukas J, Russell M. Synthesis of enantiomeric α-cephalins. Science. 1952;74(1):152–157.
  • Sneider A, Jadia R, Piel B, et al. Engineering remotely triggered liposomes to target triple negative breast cancer. Oncomedicine. 2017; 2:1–13.
  • Bottega R, Epand RM. Inhibition of protein kinase C by cationic amphiphiles. Biochemistry. 1992;31(37):9025–9030.
  • Datiles MJ, Johnson EA, McCarty RE. Inhibition of the ATPase activity of the catalytic portion of ATP synthases by cationic amphiphiles. Biochim Biophys Acta. 2008;1777(4):362–368.
  • Beavis AD. On the inhibition of the mitochondrial inner membrane anion uniporter by cationic amphiphiles and other drugs. J Biol Chem. 1989;264(3):1508–1515.
  • Mukhopadhyay BR, Kartha KP, Russell DA, et al. Streamlined synthesis of per-O-acetylated Sugars, glycosyl iodides, or thioglycosides from unprotected reducing sugars. J Org Chem. 2004;69(22):7758–7760.
  • Lindh I, Stawinski J. A general method for synthesis of glycerophospholipids and their analogues via H-phosphonate intermediates. J Org Chem. 1989;54(6):1338–1343.
  • Ren YC, Mu Y, Song YP, et al. A new peptide ligand for colon cancer targeted delivery of micelles. Drug Deliv. 2016;23(5):1763–1772.
  • Susumu K, Mei BC, Mattoussi H. Multifunctional ligands based on dihydrolipoic acid and polyethylene glycol to promote biocompatibility of quantum dots. Nat Protoc. 2009;4(3):424–436.
  • Talens VS, Englebienne P, Trinh TT, et al. Aromatic gain in a supramolecular polymer. Angew Chem Int Ed. 2015;54(36):10502–10506.
  • Guo X, Shi CL, Wang J, et al. pH-triggered intracellular release from actively targeting polymer Micelles. Biomaterials. 2013;34(18):4544–4554.
  • Xu Q, Ensign LM, Boylan NJ, et al. A impact of surface polyethylene glycol (PEG) density on biodegradable nanoparticle transport in mucus ex vivo and distribution in vivo. ACS Nano. 2015;9(9):9217–9227.
  • Locke LW, Mayo MW, Yoo AD, et al. PET imaging of tumor associated macrophages using mannose coated 64Cu liposomes. Biomaterials. 2012;33(31):7785–7793.
  • Ngarmukos C, Baur EL, Kumagai AK. Co-localization of GLUT1 and GLUT4 in the blood-brain barrier of the rat ventromedial hypothalamus. Brain Res. 2001;900(1):1–8.
  • Kainulainen H, Breiner M, Schürmann A, et al. In vivo glucose uptake and glucose transporter proteins GLUT1 and GLUT4 in heart and various types of skeletal muscle from streptozotocin-diabetic rats. Biochim Biophys Acta. 1994;1225(3):275–282.
  • Zhang HY, Schin ML, Saha J, et al. Podocyte-specific overexpression of GLUT1 surprisingly reduces mesangial matrix expansion in diabetic nephropathy in mice. Am J Physiol Renal Physiol. 2010;299(1):F91–F98.
  • Zuckerman JE, Davis ME. Targeting therapeutics to the glomerulus with nanoparticles. Adv Chronic Kidney Dis. 2013;20(6):500–507.
  • Holman GD. Chemical biology probes of mammalian GLUT structure and function. Biochemical Journal. 2018;475(22):3511–3534.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.