315
Views
7
CrossRef citations to date
0
Altmetric
Review Articles

Current status and applications of animal models in pre-clinical development of orally administered insulin-loaded nanoparticles

, & ORCID Icon
Pages 882-903 | Received 07 Nov 2019, Accepted 17 Apr 2020, Published online: 29 Apr 2020

References

  • Sonaje K, Lin KJ, Wang JJ, et al. Self-assembled ph-sensitive nanoparticles: a platform for oral delivery of protein drugs. Adv Funct Mater. 2010;20(21):3695–3700.
  • Cho HJ, Oh J, Choo MK, et al. Chondroitin sulfate-capped gold nanoparticles for the oral delivery of insulin. Int J Biol Macromol. 2014;63:15–20.
  • Wong CY, Martinez J, Dass CR. Oral delivery of insulin for treatment of diabetes: status quo, challenges and opportunities. J Pharm Pharmacol. 2016;68(9):1093–1108.
  • Avadi MR, Sadeghi AMM, Mohamadpour Dounighi N, et al. Ex vivo evaluation of insulin nanoparticles using chitosan and arabic gum. ISRN Pharm. 2011;2011:1–6.
  • Li MG, Lu WL, Wang JC, et al. Distribution, transition, adhesion and release of insulin loaded nanoparticles in the gut of rats. Int J Pharm. 2007;329(1–2):182–191.
  • Sarmento B, Ribeiro A, Veiga F, et al. Alginate/chitosan nanoparticles are effective for oral insulin delivery. Pharm Res. 2007;24(12):2198–2206.
  • Sarmento B, Ribeiro A, Veiga F, et al. Oral bioavailability of insulin contained in polysaccharide nanoparticles. Biomacromolecules. 2007;8(10):3054–3060.
  • Zhang N, Ping Q, Huang G, et al. Lectin-modified solid lipid nanoparticles as carriers for oral administration of insulin. Int J Pharm. 2006;327(1–2):153–159.
  • Mukhopadhyay P, Sarkar K, Chakraborty M, et al. Oral insulin delivery by self-assembled chitosan nanoparticles: in vitro and in vivo studies in diabetic animal model. Mater Sci Eng C Mater Biol Appl. 2013;33(1):376–382.
  • Sung HW, Sonaje K, Liao ZX, et al. pH-responsive nanoparticles shelled with chitosan for oral delivery of insulin: from mechanism to therapeutic applications. Acc Chem Res. 2012;45(4):619–629.
  • Andreani T, de Souza AL, Kiill CP, et al. Preparation and characterization of peg-coated silica nanoparticles for oral insulin delivery. Int J Pharm. 2014;473(1–2):627–635.
  • Reix N, Parat A, Seyfritz E, et al. In vitro uptake evaluation in Caco-2 cells and in vivo results in diabetic rats of insulin-loaded PLGA nanoparticles. Int J Pharm. 2012;437(1–2):213–220.
  • Ganeshkumar M, Ponrasu T, Sathishkumar M, et al. Preparation of amphiphilic hollow carbon nanosphere loaded insulin for oral delivery. Colloids Surf B Biointerfaces. 2013;103:238–243.
  • Sheng J, Han L, Qin J, et al. N-trimethyl chitosan chloride-coated plga nanoparticles overcoming multiple barriers to oral insulin absorption. ACS Appl Mater Interfaces. 2015;7(28):15430–15441.
  • Shan W, Zhu X, Tao W, et al. Enhanced oral delivery of protein drugs using zwitterion-functionalized nanoparticles to overcome both the diffusion and absorption barriers. ACS Appl Mater Interfaces. 2016;8(38):25444–25453.
  • Salvioni L, Fiandra L, Del Curto MD, et al. Oral delivery of insulin via polyethylene imine-based nanoparticles for colonic release allows glycemic control in diabetic rats. Pharmacol Res. 2016;110:122–130.
  • Ghavimishamekh A, Ziamajidi N, Dehghan A, et al. Study of insulin-loaded chitosan nanoparticle effects on TGF-β1 and fibronectin expression in kidney tissue of type 1 diabetic rats. Ind J Clin Biochem. 2019;34(4):418–426.
  • Wong CY, Al-Salami H, Dass CR. Potential of insulin nanoparticle formulations for oral delivery and diabetes treatment. J Control Release. 2017;264:247–275.
  • Wong CY, Al-Salami H, Dass CR. Recent advancements in oral administration of insulin-loaded liposomal drug delivery systems for diabetes mellitus. Int J Pharm. 2018;549(1–2):201–217.
  • Wong CY, Al-Salami H, Dass CR. Microparticles, microcapsules and microspheres: a review of recent developments and prospects for oral delivery of insulin. Int J Pharm. 2018;537(1–2):223–244.
  • Makhlof A, Tozuka Y, Takeuchi H. Design and evaluation of novel ph-sensitive chitosan nanoparticles for oral insulin delivery. Eur J Pharm Sci. 2011;42(5):445–451.
  • Wong CY, Luna G, Martinez J, et al. Bio-nanotechnological advancement of orally administered insulin nanoparticles: comprehensive review of experimental design for physicochemical characterization. Int J Pharm. 2019;572:118720.
  • Ventola CL. Progress in nanomedicine: approved and investigational nanodrugs. P T. 2017;42(12):742–755.
  • Berardi A, Baldelli Bombelli F. Oral delivery of nanoparticles - let’s not forget about the protein corona. Expert Opin Drug Del. 2019;16(6):563–566.
  • Hackam DG, Redelmeier DA. Translation of research evidence from animals to humans. JAMA. 2006;296(14):1727–1732.
  • Wong CY, Al-Salami H, Dass CR. Cellular assays and applied technologies for characterisation of orally administered protein nanoparticles: a systematic review. J Drug Target. 2020;12:1–15.
  • Smith MM, Clarke EC, Little CB. Considerations for the design and execution of protocols for animal research and treatment to improve reproducibility and standardization: “Depart well-prepared and arrive safely.” Osteoarthritis Cartilage. 2017;25(3):354–363.
  • Thompson CJ, Tetley L, Cheng WP. The influence of polymer architecture on the protective effect of novel comb shaped amphiphilic poly(allylamine) against in vitro enzymatic degradation of insulin–towards oral insulin delivery. Int J Pharm. 2010;383(1–2):216–227.
  • Reis CP, Ribeiro AJ, Houng S, et al. Nanoparticulate delivery system for insulin: Design, characterization and in vitro/in vivo bioactivity. Eur J Pharm Sci. 2007;30(5):392–397.
  • Barichello JM, Morishita M, Takayama K, et al. Encapsulation of hydrophilic and lipophilic drugs in plga nanoparticles by the nanoprecipitation method. Drug Dev Ind Pharm. 1999;25(4):471–476.
  • Cui FD, Tao AJ, Cun DM, et al. Preparation of insulin loaded plga-hp55 nanoparticles for oral delivery. J Pharm Sci. 2007;96(2):421–427.
  • Sonaje K, Lin YH, Juang JH, et al. In vivo evaluation of safety and efficacy of self-assembled nanoparticles for oral insulin delivery. Biomaterials. 2009;30(12):2329–2339.
  • Zheng Y, Wu J, Shan W, et al. Multifunctional nanoparticles enable efficient oral delivery of biomacromolecules via improving payload stability and regulating the transcytosis pathway. ACS Appl Mater Interfaces. 2018;10(40):34039–34049.
  • Mahjub R, Radmehr M, Dorkoosh FA, et al. Lyophilized insulin nanoparticles prepared from quaternized n-aryl derivatives of chitosan as a new strategy for oral delivery of insulin: In vitro, ex vivo and in vivo characterizations. Drug Dev Ind Pharm. 2014;40(12):1645–1659. Dec
  • Liu C, Kou Y, Zhang X, et al. Enhanced oral insulin delivery via surface hydrophilic modification of chitosan copolymer based self-assembly polyelectrolyte nanocomplex. Int J Pharm. 2019;554:36–47.
  • Zhang L, Qin H, Li J, et al. Preparation and characterization of layer-by-layer hypoglycemic nanoparticles with ph-sensitivity for oral insulin delivery. J Mater Chem B. 2018;6(45):7451–7461.
  • Wu J, Zheng Y, Liu M, et al. Biomimetic viruslike and charge reversible nanoparticles to sequentially overcome mucus and epithelial barriers for oral insulin delivery. ACS Appl Mater Interfaces. 2018;10(12):9916–9928.
  • Tian H, He Z, Sun C, et al. Uniform core-shell nanoparticles with thiolated hyaluronic acid coating to enhance oral delivery of insulin. Adv Healthcare Mater. 2018;7(17):e1800285.
  • Liu M, Wu L, Shan W, et al. Iron-mimic peptide converts transferrin from foe to friend for orally targeting insulin delivery. J Mater Chem B. 2018;6(4):593–601.
  • Elsayed AM, Khaled AH, Al Remawi MM, et al. Low molecular weight chitosan-insulin complexes solubilized in a mixture of self-assembled labrosol and plurol oleaque and their glucose reduction activity in rats. Mar Drugs. 2018;16(1):32.
  • Xu Y, Zheng Y, Wu L, et al. Novel solid lipid nanoparticle with endosomal escape function for oral delivery of insulin. ACS Appl Mater Interfaces. 2018;135:46365.
  • Zhang Z, Li H, Xu G, et al. Liver-targeted delivery of insulin-loaded nanoparticles via enterohepatic circulation of bile acids. Drug Deliv. 2018;25(1):1224–1233.
  • Dahlgren D, Lennernäs H. Intestinal permeability and drug absorption: Predictive experimental, computational and in vivo approaches. Pharmaceutics. 2019;11(8):411.
  • González-González M, Díaz-Zepeda C, Eyzaguirre-Velásquez J, et al. Investigating gut permeability in animal models of disease. Front Physiol. 2018;9:1962–1962.
  • Bayat A, Dorkoosh FA, Dehpour AR, et al. Nanoparticles of quaternized chitosan derivatives as a carrier for colon delivery of insulin: ex vivo and in vivo studies. Int J Pharm. 2008;356(1–2):259–266.
  • Jain A, Jain SK. L-valine appended plga nanoparticles for oral insulin delivery. Acta Diabetol. 2015;52(4):663–676.
  • Sharma R, Gupta U, Garg NK, et al. Surface engineered and ligand anchored nanobioconjugate: An effective therapeutic approach for oral insulin delivery in experimental diabetic rats. Colloids Surf B Biointerfaces. 2015;127:172–181.
  • Woitiski CB, Sarmento B, Carvalho RA, et al. Facilitated nanoscale delivery of insulin across intestinal membrane models. Int J Pharm. 2011;412(1–2):123–131.
  • Zhang P, Xu Y, Zhu X, et al. Goblet cell targeting nanoparticle containing drug-loaded micelle cores for oral delivery of insulin. Int J Pharm. 2015;496(2):993–1005.
  • Westerhout J, Wortelboer H, Verhoeckx K, et al. Ussing chamber. In: Verhoeckx K, CotterIván P, López-Expósito I, editors. The impact of food bioactives on health. Cham (CH): Springer; 2015. p. 263–273.
  • Wong CY, Martinez J, Al-Salami H, et al. Quantification of bsa-loaded chitosan/oligonucleotide nanoparticles using reverse-phase high-performance liquid chromatography. Anal Bioanal Chem. 2018;410(27):6991–7006.
  • Wang J, Kong M, Zhou Z, et al. Mechanism of surface charge triggered intestinal epithelial tight junction opening upon chitosan nanoparticles for insulin oral delivery. Carbohydr Polym. 2017;157:596–602.
  • Clarke LL. A guide to ussing chamber studies of mouse intestine. Am J Physiol Gastrointest Liver Physiol. 2009;296(6):1151–1166.
  • Thomson A, Smart K, Somerville MS, et al. The ussing chamber system for measuring intestinal permeability in health and disease. BMC Gastroenterol. 2019;19(1):98.
  • Damge C, Maincent P, Ubrich N. Oral delivery of insulin associated to polymeric nanoparticles in diabetic rats. J Control Release. 2007;117(2):163–170.
  • Aboubakar M, Couvreur P, Pinto-Alphandary H, et al. Insulin-loaded nanocapsules for oral administration: in vitro and in vivo investigation. Drug Dev Res. 2000;49(2):109–117.
  • Drummen G. Fluorescent probes and fluorescence (microscopy) techniques–illuminating biological and biomedical research. Molecules. 2012;17(12):14067–14090.
  • Merian J, Gravier J, Navarro F, et al. Fluorescent nanoprobes dedicated to in vivo imaging: from preclinical validations to clinical translation. Molecules. 2012;17(5):5564–5591.
  • Ahn J, Choe K, Wang T, et al. In vivo longitudinal cellular imaging of small intestine by side-view endomicroscopy. Biomed Opt Express. 2015;6(10):3963–3972.
  • Choi M, Kwok SJ, Yun SH. In vivo fluorescence microscopy: lessons from observing cell behavior in their native environment. Physiology (Bethesda). 2015;30(1):40–49.
  • Su FY, Lin KJ, Sonaje K, et al. Protease inhibition and absorption enhancement by functional nanoparticles for effective oral insulin delivery. Biomaterials. 2012;33(9):2801–2811.
  • Chuang EY, Lin KJ, Su FY, et al. Noninvasive imaging oral absorption of insulin delivered by nanoparticles and its stimulated glucose utilization in controlling postprandial hyperglycemia during OGTT in diabetic rats. J Control Release. 2013;172(2):513–522.
  • Cheville NF, Stasko J. Techniques in electron microscopy of animal tissue. Vet Pathol. 2014;51(1):28–41.
  • Mielańczyk Ł, Matysiak N, Klymenko O, et al. Transmission electron microscopy of biological samples. In: Khan M, editor. The transmission electron microscope-theory and applications. Islamabad (Pakistan): Pakistan Institute of Nuclear Science and Technology; 2015.
  • Wisse E, Braet F, Duimel H, et al. Fixation methods for electron microscopy of human and other liver. WJG. 2010;16(23):2851–2866.
  • Ke X, Bittencourt C, Van Tendeloo G. Possibilities and limitations of advanced transmission electron microscopy for carbon-based nanomaterials. Beilstein J Nanotechnol. 2015;6:1541–1557.
  • Woitiski CB, Neufeld RJ, Veiga F, et al. Pharmacological effect of orally delivered insulin facilitated by multilayered stable nanoparticles. Eur J Pharm Sci. 2010;41(3–4):556–563.
  • Fonte P, Nogueira T, Gehm C, et al. Chitosan-coated solid lipid nanoparticles enhance the oral absorption of insulin. Drug Deliv Transl Res. 2011;1(4):299–308.
  • Li X, Guo S, Zhu C, et al. Intestinal mucosa permeability following oral insulin delivery using core shell corona nanolipoparticles. Biomaterials. 2013;34(37):9678–9687.
  • Goetz M. Confocal laser endomicroscopy: applications in clinical and translational science-a comprehensive review. ISRN Pathol. 2012;2012:1–13.
  • Tan X, Liu X, Zhang Y, et al. Silica nanoparticles on the oral delivery of insulin. Expert Opin Drug Deliv. 2018;15(8):805–820.
  • Verma A, Sharma S, Gupta PK, et al. Vitamin b12 functionalized layer by layer calcium phosphate nanoparticles: a mucoadhesive and ph responsive carrier for improved oral delivery of insulin. Acta Biomater. 2016;31:288–300.
  • Deng W, Xie Q, Wang H, et al. Selenium nanoparticles as versatile carriers for oral delivery of insulin: insight into the synergic antidiabetic effect and mechanism. Nanomedicine. 2017;13(6):1965–1974.
  • Sajeesh S, Sharma CP. Cyclodextrin-insulin complex encapsulated polymethacrylic acid based nanoparticles for oral insulin delivery. Int J Pharm. 2006;325(1–2):147–154.
  • Zhang Y, Wu X, Meng L, et al. Thiolated eudragit nanoparticles for oral insulin delivery: preparation, characterization and in vivo evaluation. Int J Pharm. 2012;436(1–2):341–350.
  • Wong CY, Martinez J, Carnagarin R, et al. In-vitro evaluation of enteric coated insulin tablets containing absorption enhancer and enzyme inhibitor. J Pharm Pharmacol. 2017;69(3):285–294.
  • Bassi da Silva J, Ferreira S, de Freitas O, et al. A critical review about methodologies for the analysis of mucoadhesive properties of drug delivery systems. Drug Dev Ind Pharm. 2017;43(7):1053–1070.
  • Liu Y, Kong M, Feng C, et al. Biocompatibility, cellular uptake and biodistribution of the polymeric amphiphilic nanoparticles as oral drug carriers. Colloids Surf B Biointerfaces. 2013;103:345–353.
  • Wong CY, Al-Salami H, Dass CR. The role of chitosan on oral delivery of peptide-loaded nanoparticle formulation. J Drug Target. 2018;26(7):551–562.
  • Bhattacharyya A, Nasim F, Mishra R, et al. Polyurethane‐incorporated chitosan/alginate core–shell nano‐particles for controlled oral insulin delivery. J Appl Polym Sci. 2018;135(26):46365.
  • Tong F, Liu S, Yan B, et al. Endogenous ornithine decarboxylase/polyamine system mediated the antagonist role of insulin/peg-cmcs preconditioning against heart ischemia/reperfusion injury in diabetes mellitus. IJN. 2018;13:2507–2520.
  • Rho JG, Han HS, Han JH, et al. Self-assembled hyaluronic acid nanoparticles: implications as a nanomedicine for treatment of type 2 diabetes. J Control Release. 2018;279:89–98.
  • Li H, Zhang Z, Bao X, et al. Fatty acid and quaternary ammonium modified chitosan nanoparticles for insulin delivery. Colloids Surf B Biointerfaces. 2018;170:136–143.
  • Song M, Wang H, Chen K, et al. Oral insulin delivery by carboxymethyl-β-cyclodextrin-grafted chitosan nanoparticles for improving diabetic treatment. Artif Cells Nanomed Biotechnol. 2018;46(sup3):S774–S782.
  • Presas E, McCartney F, Sultan E, et al. Physicochemical, pharmacokinetic and pharmacodynamic analyses of amphiphilic cyclodextrin-based nanoparticles designed to enhance intestinal delivery of insulin. J Control Release. 2018;286:402–414.
  • Heidarisasan S, Ziamajidi N, Karimi J, et al. Effects of insulin-loaded chitosan-alginate nanoparticle on rage expression and oxidative stress status in the kidney tissue of rats with type 1 diabetes. Iran J Basic Med Sci. 2018;21(10):1035–1042.
  • Jamshidi M, Ziamajidi N, Khodadadi I, et al. The effect of insulin-loaded trimethylchitosan nanoparticles on rats with diabetes type i. Biomed Pharmacother. 2018;97:729–735.
  • Hou L, Zheng Y, Wang Y, et al. Self-regulated carboxyphenylboronic acid-modified mesoporous silica nanoparticles with “touch switch” releasing property for insulin delivery. ACS Appl Mater Interfaces. 2018;10(26):21927–21938.
  • Fu Y, Liu W, Wang LY, et al. Erythrocyte-membrane-camouflaged nanoplatform for intravenous glucose-responsive insulin delivery. Adv Funct Mater. 2018;28(41):1802250.
  • Yang L, Li M, Sun Y, et al. A cell-penetrating peptide conjugated carboxymethyl-β-cyclodextrin to improve intestinal absorption of insulin. Int J Biol Macromol. 2018;111:685–695.
  • Prusty A, Sahu SK. Development and evaluation of insulin incorporated nanoparticles for oral administration. ISRN Nanotechnol. 2013;2013:1–6.
  • Liu M, Zhang J, Zhu X, et al. Efficient mucus permeation and tight junction opening by dissociable “mucus-inert” agent coated trimethyl chitosan nanoparticles for oral insulin delivery. J Control Release. 2016;222:67–77.
  • Liu L, Zhang Y, Yu S, et al. Dual stimuli-responsive nanoparticle-incorporated hydrogels as an oral insulin carrier for intestine-targeted delivery and enhanced paracellular permeation. ACS Biomater Sci Eng. 2018;4(8):2889–2902.
  • Daimon Y, Kamei N, Kawakami K, et al. Dependence of intestinal absorption profile of insulin on carrier morphology composed of beta-cyclodextrin-grafted chitosan. Mol Pharmaceutics. 2016;13(12):4034–4042.
  • Cui F, Qian F, Zhao Z, et al. Preparation, characterization, and oral delivery of insulin loaded carboxylated chitosan grafted poly(methyl methacrylate) nanoparticles. Biomacromolecules. 2009;10(5):1253–1258.
  • Liu X, Liu C, Zhang W, et al. Oligoarginine-modified biodegradable nanoparticles improve the intestinal absorption of insulin. Int J Pharm. 2013;448(1):159–167.
  • Zhu X, Shan W, Zhang P, et al. Penetratin derivative-based nanocomplexes for enhanced intestinal insulin delivery. Mol Pharm. 2014;11(1):317–328.
  • Jiminez JA, Uwiera TC, Douglas Inglis G, et al. Animal models to study acute and chronic intestinal inflammation in mammals. Gut Pathog. 2015;7(1):29.
  • Moran CJ, Ramesh A, Brama PA, et al. The benefits and limitations of animal models for translational research in cartilage repair. J Exp Orthop. 2016;3(1):1.
  • Waterston RH, Lindblad-Toh K, Birney E, et al. Initial sequencing and comparative analysis of the mouse genome. Nature. 2002;420(6915):520–562.
  • Patra JK, Das G, Fraceto LF, et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol. 2018;16(1):71.
  • Du X, Zhang J, Zhang Y, et al. Decanoic acid grafted oligochitosan nanoparticles as a carrier for insulin transport in the gastrointestinal tract. Carbohydr Polym. 2014;111:433–441.
  • Hurkat P, Jain A, Jain A, et al. Concanavalin a conjugated biodegradable nanoparticles for oral insulin delivery. J Nanopart Res. 2012;14(11):1219.
  • Koch RE, Hill GE. An assessment of techniques to manipulate oxidative stress in animals. Funct Ecol. 2017;31(1):9–21.
  • Lin YH, Mi FL, Chen CT, et al. Preparation and characterization of nanoparticles shelled with chitosan for oral insulin delivery. Biomacromolecules. 2007;8(1):146–152.
  • Katerji M, Filippova M, Duerksen-Hughes P. Approaches and methods to measure oxidative stress in clinical samples: research applications in the cancer field. Oxid Med Cell Longev. 2019;2019:1–29.
  • Bhattacharyya A, Chattopadhyay R, Mitra S, et al. Oxidative stress: an essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol Rev. 2014;94(2):329–354.
  • Sandhu GS, Solorio L, Broome A-M, et al. Whole animal imaging. WIREs Syst Biol Med. 2010;2(4):398–421.
  • Zhang Z, Cai H, Liu Z, et al. Effective enhancement of hypoglycemic effect of insulin by liver-targeted nanoparticles containing cholic acid-modified chitosan derivative. Mol Pharm. 2016;13(7):2433–2442.
  • Chuang EY, Lin KJ, Su FY, et al. Calcium depletion-mediated protease inhibition and apical-junctional-complex disassembly via an egta-conjugated carrier for oral insulin delivery. J Control Release. 2013;169(3):296–305.
  • Zhang X, Sun M, Zheng A, et al. Preparation and characterization of insulin-loaded bioadhesive plga nanoparticles for oral administration. Eur J Pharm Sci. 2012;45(5):632–638.
  • Sonaje K, Lin KJ, Wey SP, et al. Biodistribution, pharmacodynamics and pharmacokinetics of insulin analogues in a rat model: oral delivery using ph-responsive nanoparticles vs. Subcutaneous injection. Biomaterials. 2010;31(26):6849–6858.
  • Sonaje K, Chen YJ, Chen HL, et al. Enteric-coated capsules filled with freeze-dried chitosan/poly(gamma-glutamic acid) nanoparticles for oral insulin delivery. Biomaterials. 2010;31(12):3384–3394.
  • Dorbala S, Ananthasubramaniam K, Armstrong IS, et al. Single photon emission computed tomography (spect) myocardial perfusion imaging guidelines: instrumentation, acquisition, processing, and interpretation. J Nucl Cardiol. 2018;25(5):1784–1846.
  • Rahmim A, Zaidi H. PET versus SPECT: strengths, limitations and challenges. Nucl Med Commun. 2008;29(3):193–207.
  • Chen S, Guo F, Deng T, et al. Eudragit s100-coated chitosan nanoparticles co-loading tat for enhanced oral colon absorption of insulin. AAPS PharmSciTech. 2017;18(4):1277–1287.
  • Barbari GR, Dorkoosh F, Amini M, et al. Synthesis and characterization of a novel peptide-grafted cs and evaluation of its nanoparticles for the oral delivery of insulin, in vitro, and in vivo study. IJN. 2018;13:5127–5138.
  • Xing D, Chen J, Yang J, et al. Perspectives on animal models utilized for the research and development of regenerative therapies for articular cartilage. Curr Mol Bio Rep. 2016;2(2):90–100.
  • Lopes MA, Abrahim-Vieira B, Oliveira C, et al. Probing insulin bioactivity in oral nanoparticles produced by ultrasonication-assisted emulsification/internal gelation. Int J Nanomedicine. 2015;10:5865–5880.
  • Elsayed A, Remawi MA, Qinna N, et al. Formulation and characterization of an oily-based system for oral delivery of insulin. Eur J Pharm Biopharm. 2009;73(2):269–279.
  • Wu ZM, Zhou L, Guo XD, et al. Hp55-coated capsule containing plga/rs nanoparticles for oral delivery of insulin. Int J Pharm. 2012;425(1–2):1–8.
  • Reifenrath J, Angrisani N, Lalk M, et al. Replacement, refinement, and reduction: Necessity of standardization and computational models for long bone fracture repair in animals. J Biomed Mater Res. 2014;102(8):2884–2900.
  • Cui F, Shi K, Zhang L, et al. Biodegradable nanoparticles loaded with insulin-phospholipid complex for oral delivery: preparation, in vitro characterization and in vivo evaluation. J Control Release. 2006;114(2):242–250.
  • Reis CP, Ribeiro AJ, Veiga F, et al. Polyelectrolyte biomaterial interactions provide nanoparticulate carrier for oral insulin delivery. Drug Deliv. 2008;15(2):127–139.
  • Qian F, Cui F, Ding J, et al. Chitosan graft copolymer nanoparticles for oral protein drug delivery: preparation and characterization. Biomacromolecules. 2006;7(10):2722–2727.
  • Zhang ZH, Lv HX, Zhou JP. Novel solid lipid nanoparticles as carriers for oral administration of insulin. Pharmazie. 2009;64(9):574–578.
  • Chalasani KB, Russell-Jones GJ, Yandrapu SK, et al. A novel vitamin b12-nanosphere conjugate carrier system for peroral delivery of insulin. J Control Release. 2007;117(3):421–429.
  • Chalasani KB, Russell-Jones GJ, Jain AK, et al. Effective oral delivery of insulin in animal models using vitamin b12-coated dextran nanoparticles. J Control Release. 2007;122(2):141–150.
  • Gupta R, Mohanty S. Controlled release of insulin from folic acid-insulin complex nanoparticles. Colloids Surf B Biointerfaces. 2017;154:48–54.
  • Sun S, Liang N, Kawashima Y, et al. Hydrophobic ion pairing of an insulin-sodium deoxycholate complex for oral delivery of insulin. Int J Nanomed. 2011;6:3049–3056.
  • Ma Z, Lim TM, Lim LY. Pharmacological activity of peroral chitosan-insulin nanoparticles in diabetic rats. Int J Pharm. 2005;293(1–2):271–280.
  • Czuba E, Diop M, Mura C, et al. Oral insulin delivery, the challenge to increase insulin bioavailability: influence of surface charge in nanoparticle system. Int J Pharm. 2018; 542(1–2):47–55.
  • Cui Y, Shan W, Zhou R, et al. The combination of endolysosomal escape and basolateral stimulation to overcome the difficulties of “easy uptake hard transcytosis” of ligand-modified nanoparticles in oral drug delivery. Nanoscale. 2018;10(3):1494–1507.
  • Zeng Z, Dong C, Zhao P, et al. Scalable production of therapeutic protein nanoparticles using flash nanoprecipitation. Adv Healthcare Mater. 2019;8(6):e1801010.
  • Sun S, Liang N, Piao H, et al. Insulin-s.O (sodium oleate) complex-loaded plga nanoparticles: formulation, characterization and in vivo evaluation. J Microencapsul. 2010;27(6):471–478.
  • Pan Y, Li YJ, Zhao HY, et al. Bioadhesive polysaccharide in protein delivery system: Chitosan nanoparticles improve the intestinal absorption of insulin in vivo. Int J Pharm. 2002;249(1–2):139–147.
  • Bhumkar DR, Joshi HM, Sastry M, et al. Chitosan reduced gold nanoparticles as novel carriers for transmucosal delivery of insulin. Pharm Res. 2007;24(8):1415–1426.
  • Liu L, Zhou C, Xia X, et al. Self-assembled lecithin/chitosan nanoparticles for oral insulin delivery: preparation and functional evaluation. Int J Nanomed. 2016;11:761–769.
  • Havel H, Finch G, Strode P, et al. Nanomedicines: from bench to bedside and beyond. AAPS J. 2016;18(6):1373–1378.
  • Choi YH, Han H-K. Nanomedicines: Current status and future perspectives in aspect of drug delivery and pharmacokinetics. J Pharm Investig. 2018;48(1):43–60.
  • Anselmo AC, Mitragotri S. Nanoparticles in the clinic. Bioeng Transl Med. 2016;1(1):10–29.
  • Onoue S, Yamada S, Chan HK. Nanodrugs: pharmacokinetics and safety. Int J Nanomed. 2014;9:1025–1037.
  • Havel HA. Where are the nanodrugs? An industry perspective on development of drug products containing nanomaterials. Aaps J. 2016;18(6):1351–1353.
  • Sparreboom A, Scripture CD, Trieu V, et al. Comparative preclinical and clinical pharmacokinetics of a cremophor-free, nanoparticle albumin-bound paclitaxel (abi-007) and paclitaxel formulated in cremophor (taxol). Clin Cancer Res. 2005;11(11):4136–4143.
  • Reinholz J, Landfester K, Mailänder V. The challenges of oral drug delivery via nanocarriers. Drug Deliv. 2018;25(1):1694–1705.
  • Yu F, Li Y, Liu CS, et al. Enteric-coated capsules filled with mono-disperse micro-particles containing plga-lipid-peg nanoparticles for oral delivery of insulin. Int J Pharm. 2015;484(1–2):181–191.
  • Zuckerman JE, Gritli I, Tolcher A, et al. Correlating animal and human phase ia/ib clinical data with calaa-01, a targeted, polymer-based nanoparticle containing sirna. Proc Natl Acad Sci USA. 2014;111(31):11449–11454.
  • Eliasof S, Lazarus D, Peters CG, et al. Correlating preclinical animal studies and human clinical trials of a multifunctional, polymeric nanoparticle. Proc Natl Acad Sci USA. 2013;110(37):15127–15132.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.