180
Views
6
CrossRef citations to date
0
Altmetric
Review Articles

Discovery of necrosis avidity of rhein and its applications in necrosis imaging

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 904-912 | Received 09 Feb 2020, Accepted 19 Apr 2020, Published online: 30 Apr 2020

References

  • Zhang D, Gao M, Jin Q, et al. Updated developments on molecular imaging and therapeutic strategies directed against necrosis. Acta Pharm Sin B. 2019;9(3):455–468.
  • Cona M, Oyen R, Ni Y. Necrosis avidity of organic compounds: a natural phenomenon with exploitable theragnostic potentials. CMC. 2015;22(15):1829–1849.
  • Bonte FJ, Parkey RW, Graham KD, et al. A new method for radionuclide imaging of myocardial infarcts. Radiology. 1974;110(2):473–474.
  • Ni Y. Metalloporphyrins and functional analogues as MRI contrast agents. CMIR. 2008;4(2):96–112.
  • Ni Y, Bormans G, Chen F, et al. Necrosis avid contrast agents: functional similarity versus structural diversity. Invest Radiol. 2005;40(8):526–535.
  • Jiang B, Wang J, Ni Y, et al. Necrosis avidity: a newly discovered feature of hypericin and its preclinical applications in necrosis imaging. Theranostics. 2013;3(9):667–676.
  • Li J, Oyen R, Verbruggen A, et al. Small molecule sequential dual-targeting theragnostic strategy (SMSDTTS): from preclinical experiments towards possible clinical anticancer applications. J Cancer. 2013;4(2):133–145.
  • Cona MM, de Witte P, Verbruggen A, et al. An overview of translational (radio) pharmaceutical research related to certain oncological and non-oncological applications. WJM. 2013;3(4):45–64.
  • De Saint-Hubert M, Bauwens M, Deckers N, et al. In vivo molecular imaging of apoptosisand necrosis in atherosclerotic plaquesusing microSPECT-CT and microPET-CT imaging. Mol Imaging Biol. 2014;16(2):246–254.
  • Fang C, Wang K, Zeng C, et al. Illuminating necrosis: From mechanistic exploration to preclinical application using fluorescence molecular imaging with indocyanine green. Sci Rep. 2016;6(1):21013.
  • Xie B, Stammes MA, van Driel P, et al. Necrosis avid near infrared fluorescent cyanines for imaging cell death and their use to monitor therapeutic efficacy in mouse tumor models. Oncotarget. 2015;6(36):39036–39049.
  • Stammes MA, Maeda A, Bu J, et al. The necrosis-avid small molecule HQ4-DTPA as a multimodal imaging agent for monitoring radiation therapy-induced tumor cell death. Front Oncol. 2016;6:221.
  • Stammes MA, Knol-Blankevoort VT, Cruz LJ, et al. Pre-clinical evaluation of a cyanine-based SPECT probe for multimodal tumor necrosis imaging. Mol Imaging Biol. 2016;18(6):905–915.
  • Zhu M, Lin XA, Zha XM, et al. Evaluation of the therapeutic efficacy of sequential therapy involving percutaneous microwave ablation in combination with 131I-hypericin using the VX2 rabbit breast solid tumor mode. PLoS One. 2015;10(3):e0120303.
  • Jendželovská Z, Jendželovský R, Kuchárová B, et al. Hypericin in the light and in the dark: two sides of the same coin. Front Plant Sci. 2016;7:560.
  • Rybczynska AA, Boersma HH, de Jong S, et al. Avenues to molecular imaging of dying cells: Focus on cancer. Med Res Rev. 2018;38(6):1713–1768.
  • Li Y, Wang S, Zhao Y, et al. A model in vitro study using hypericin:tumor-versus necrosis-targeting property and possible mechanisms. Biology. 2020;9(1):13.
  • Zhou YX, Xia W, Yue W, et al. Rhein: a review of pharmacological activities. Evid Based Complement Alternat Med. 2015;2015:1–10.
  • Sun H, Luo G, Chen D, et al. A comprehensive and system review for the pharmacological mechanism of action of rhein, an active anthraquinone ingredient. Front Pharmacol. 2016;7:247.
  • Wu C, Cao H, Zhou H, et al. Research progress on the antitumor effects of rhein: literature review. Anticancer Agents Med Chem. 2017;17(12):1624–1632.
  • Li J, Sun Z, Zhang J, et al. A dual-targeting anticancer approach: soil and seed principle. Radiology. 2011;260(3):799–807.
  • Li J, Cona MM, Chen F, et al. Exploring theranostic potentials of radioiodinated hypericin in rodent necrosis models. Theranostics. 2012;2(10):1010–1019.
  • Li J, Cona MM, Chen F, et al. Sequential systemic administrations of combretastatin A4 Phosphate and radioiodinated hypericin exert synergistic targeted theranostic effects with prolonged survival on SCID mice carrying bifocal tumor xenografts. Theranostics. 2013;3(2):127–137.
  • Kong M, Zhang J, Jiang C, et al. Necrosis affinity evaluation of 131I-hypericin in a rat model of induced necrosis. J Drug Target. 2013;21(6):604–610.
  • Ji Y, Zhan Y, Jiang C, et al. Improvement of solubility and targetability of radioiodinated hypericin by using sodium cholate based solvent in rat models of necrosis. J Drug Target. 2014;22(4):304–312.
  • Cona MM, Feng Y, Verbruggen A, et al. Improved clearance of radioiodinated hypericin as a targeted anticancer agent by using a duodenal drainage catheter in rats. Exp Biol Med (Maywood). 2013;238(12):1437–1449.
  • Jiang C, Li Y, Jiang X, et al. Hypericin as a marker for determination of myocardial viability in a rat model of myocardial infarction. Photochem Photobiol. 2014;90(4):n/a–872.
  • Qi X, Shao H, Zhang J, et al. Radiopharmaceutical study on Iodine-131-labelled hypericin in a canine model of hepatic RFA-induced coagulative necrosis. Radiol Med. 2015;120(2):213–221.
  • Cona MM, Alpizar YA, Li J, et al. Radioiodinated hypericin: its biodistribution, necrosis avidity and therapeutic efficacy are influenced by formulation. Pharm Res. 2014;31(2):278–290.
  • Liu X, Jiang C, Li Y, et al. Evaluation of hypericin: effect of aggregation on targeting biodistribution. J Pharm Sci. 2015;104(1):215–222.
  • Ji Y, Jiang C, Zhang X, et al. Necrosis targeted combinational theragnostic approach to treat cancer. Oncotarget. 2014;5(10):2934–2946.
  • Cona MM, Feng Y, Zhang J, et al. Sodium cholate, a solubilizing agent for the necrosis avid radioiodinated hypericin in rabbits with acute myocardial infarction. Drug Deliv. 2015;22(3):427–435.
  • Liu W, Zhang D, Feng Y, et al. Biodistribution and anti-tumor efficacy of intratumorally injected necrosis-avid theranostic agent radioiodinated hypericin in rodent tumor models. J Drug Target. 2015;23(4):371–379.
  • Shao H, Zhang J, Sun Z, et al. Necrosis targeted radiotherapy with iodine-131-labeled hypericin to improve anticancer efficacy of vascular disrupting treatment in rabbit VX2 tumor models. Oncotarget. 2015;6(16):14247–14259.
  • Liu X, Feng Y, Jiang C, et al. Radiopharmaceutical evaluation of 131I-protohypericin as a necrosis avid compound. J Drug Target. 2015;23(5):417–426.
  • Liu X, Jiang C, Zhang D, et al. Tumor necrosis targeted radiotherapy of non-small cell lung cancer using radioiodinated protohypericin in a mouse model. Oncotarget. 2015;6(28):26400–26410.
  • Jiang C, Gao M, Li Y, et al. Exploring diagnostic potentials of radioiodinated sennidin A in rat model of reperfused myocardial infarction. Int J Pharm. 2015;495(1):31–40.
  • Zhang D, Huang D, Ji Y, et al. Experimental evaluation of radioiodinated sennoside B as a necrosis-avid tracer agent. J Drug Target. 2015;23(2):180–190.
  • Zhang D, Jiang C, Yang S, et al. Effects of skeleton structure on necrosis targeting and clearance properties of radioiodinated dianthrones. J Drug Target. 2016;24(6):566–577.
  • Li L, Zhang D, Yang S, et al. Effects of glycosylation on biodistribution and imaging quality of necrotic myocardium of iodine-131-labeled sennidins. Mol Imaging Biol. 2016;18(6):877–886.
  • Wang C, Jin Q, Yang S, et al. Synthesis and evaluation of 131I-skyrin as a necrosis avid agent for potential targeted radionuclide therapy of solid tumors. Mol Pharm. 2016;13(1):180–189.
  • Li J, Zhang J, Yang S, et al. Synthesis and preclinical evaluation of radioiodinated hypericin dicarboxylic acid as a necrosis avid agent in rat models of induced hepatic, muscular, and myocardial necroses. Mol Pharm. 2016;13(1):232–240.
  • Duan X, Yin Z, Jiang C, et al. Radioiodinated hypericin disulfonic acid sodium salts as a DNA-binding probe for early imaging of necrotic myocardium. Eur J Pharm Biopharm. 2017;117:151–159.
  • Wang Q, Yang S, Jiang C, et al. Discovery of radioiodinated monomeric anthraquinones as a novel class of necrosis avid agents for early imaging of necrotic myocardium. Sci Rep. 2016;6(1):21341.
  • Luo Q, Jin Q, Su C, et al. Radiolabeled rhein as small-molecule necrosis avid agents for imaging of necrotic myocardium. Anal Chem. 2017;89(2):1260–1266.
  • Liang J, Luo Q, Zhang D, et al. SPECT imaging of treatment-related tumor necrosis using technetium-99m-labeled rhein. Mol Imaging Biol. 2019;21(4):660–668.
  • Bian L, Gao M, Zhang D, et al. Synthesis and biological evaluation of rhein-based MRI contrast agents for in vivo visualization of necrosis. Anal Chem. 2018;90(22):13249–13256.
  • Wu T, Zhang J, Jin Q, et al. Rhein‐based necrosis‐avid MRI contrast agents for early evaluation of tumor response to microwave ablation therapy. Magn Reson Med. 2019;82(6):2212–2224.
  • Zhang A, Wu T, Bian L, et al. Synthesis and evaluation of Ga-68-labeled rhein for early assessment of treatment-induced tumor necrosis. Mol Imaging Biol. 2019. doi:10.1007/s11307-019-01365-y
  • Barnes J, Anderson LA, Phillipson JD. St John’s wort (Hypericum perforatum L.): a review of its chemistry, pharmacology and clinical properties. J Pharm Pharmacol. 2001;53(5):583–600.
  • Miskovsky P. Hypericin-a new antiviral and antitumor photosensitizer: mechanism of action and interaction with biological macromolecules. Curr Drug Targets. 2002;3(1):55–84.
  • Kubin A, Wierrani F, Burner U, et al. Hypericin-the facts about a controversial agent. CPD. 2005;11(2):233–253.
  • Karioti A, Bilia AR. Hypericins as potential leads for new therapeutics. IJMS. 2010;11(2):562–594.
  • Ni Y, Huyghe D, Verbeke K, et al. First preclinical evaluation of mono-[123I] iodohypericin as a necrosis-avid tracer agent. Eur J Nucl Med Mol Imaging. 2006;33(5):595–601.
  • Van de Putte M, Ni Y, De Witte P. Exploration of the mechanism underlying the tumor necrosis avidity of hypericin. Oncol Rep. 2008;19(4):921–926.
  • Van de Putte M, Wang H, Chen F, et al. Hypericin as a marker for determination of tissue viability after radiofrequency ablation in a murine liver tumor model. Oncol Rep. 2008;19(4):927–932.
  • Van de Putte M, Wang H, Chen F, et al. Hypericin as a marker for determination of tissue viability after intratumoral ethanol injection in a murine liver tumor model. Acad Radiol. 2008;15(1):107–113.
  • Fonge H, Vunckx K, Wang H, et al. Non-invasive detection and quantification of acute myocardial infarction in rabbits using mono-[123I]iodohypericin microSPECT. Eur Heart J. 2007;29(2):260–269.
  • Feng Y, Cona MM, Vunckx K, et al. Detection and quantification of acute reperfused myocardial infarction in rabbits using DISA-SPECT/CT and 3.0 T cardiac MRI. Int J Cardiol. 2013;168(4):4191–4198.
  • Miranda Cona M, Feng Y, Li Y, et al. Comparative study of Iodine-123-labeled-hypericin and Tc-99m-labeled-hexakis [2-methoxyisobutylisonitril] in a rabbit model of myocardial infarction. J Cardiovasc Pharm. 2013;62(3):304–311.
  • Song S, Xiong C, Zhou M, et al. Small-animal PET of tumor damage induced by photothermal ablation with 64Cu-bis-DOTA-hypericin. J Nucl Med. 2011;52(5):792–799.
  • Ishikawa M, Hashimoto Y. Improvement in aqueous solubility in small molecule drug discovery programs by disruption of molecular planarity and symmetry. J Med Chem. 2011;54(6):1539–1554.
  • Lewin G, Maciuk A, Moncomble A, et al. Enhancement of the water solubility of flavone glycosides by disruption of molecular planarity of the aglycone moiety. J Nat Prod. 2013;76(1):8–12.
  • Chen Z, Baumeister U, Tschierske C, et al. Effect of core twisting on self-assembly and optical properties of perylene bisimide dyes in solution and columnar liquid crystalline phases. Chem Eur J. 2007;13(2):450–465.
  • Chen Z, Lohr A, Saha-Möller CR, et al. Self-assembled π-stacks of functional dyes in solution: structural and thermodynamic features. Chem Soc Rev. 2009;38(2):564–584.
  • Smith BA, Smith BD. Biomarkers and molecular probes for cell death imaging and targeted therapeutics. Bioconjugate Chem. 2012;23(10):1989–2006.
  • Garanger E, Hilderbrand SA, Blois JT, et al. A DNA-binding Gd chelate for the detection of cell death by MRI. Chem Commun. 2009;(29):4444–4446.
  • Dasari M, Lee S, Sy J, et al. Hoechst-IR: an imaging agent that detects necrotic tissue in vivo by binding extracellular DNA. Org Lett. 2010;12(15):3300–3303.
  • Huang S, Chen HH, Yuan H, et al. Molecular MRI of acute necrosis with a novel DNA-binding gadolinium chelate: kinetics of cell death and clearance in infarcted myocardium. Circ Cardiovasc Imaging. 2011;4(6):729–737.
  • Cho H, Alcantara D, Yuan H, et al. Fluorochrome-functionalized nanoparticles for imaging DNA in biological systems. ACS Nano. 2013;7(3):2032–2041.
  • Cho H, Guo Y, Sosnovik DE, et al. Imaging DNA with Fluorochrome Bearing Metals. Inorg Chem. 2013;52(21):12216–12222.
  • Chen HH, Yuan H, Cho H, et al. Theranostic nucleic acid binding nanoprobe exerts anti-inflammatory and cytoprotective effects in ischemic injury. Theranostics. 2017;7(4):814–825.
  • Zhang D, Gao M, Yao N, et al. Preclinical evaluation of radioiodinated Hoechst 33258 for early prediction of tumor response to treatment of vascular-disrupting agents. Contrast Media Mol Imaging. 2018;2018:1–9.
  • Rescifina A, Zagni C, Varrica MG, et al. Recent advances in small organic molecules as DNA intercalating agents: Synthesis, activity, and modeling. Eur J Med Chem. 2014;74:95–115.
  • Malik EM, Müller CE. Anthraquinones as pharmacological tools and drugs. Med Res Rev. 2016;36(4):705–748.
  • Jin Q, Jiang C, Gao M, et al. Target exploration of rhein as a small-molecule necrosis avid agent by post-treatment click modification. New J Chem. 2019;43(16):6121–6125.
  • Zhang S, Sun X, Kong R, et al. Studies on the interaction of apigenin with calf thymus DNA by spectroscopic methods. Spectrochim Acta A Mol Biomol Spectrosc. 2015;136:1666–1670.
  • Ramalho J, Semelka RC, Ramalho M, et al. Gadolinium-based contrast agent accumulation and toxicity: an update. Am J Neuroradiol. 2016;37(7):1192–1198.
  • Kim HK, Lee GH, Chang Y. Gadolinium as an MRI contrast agent. Future Med Chem. 2018;10(6):639–661.
  • Wahsner J, Gale EM, Rodríguez-Rodríguez A, et al. Chemistry of MRI contrast agents: current challenges and new frontiers. Chem Rev. 2019;119(2):957–1057.
  • Gillis EP, Eastman KJ, Hill MD, et al. Applications of fluorine in medicinal chemistry. J Med Chem. 2015;58(21):8315–8359.
  • Van Der Born D, Pees A, Poot AJ, et al. Fluorine-18 labelled building blocks for PET tracer synthesis. Chem Soc Rev. 2017;46(15):4709–4773.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.