181
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Dual functional liposomes carrying antioxidants against tau hyperphosphorylation and apoptosis of neurons

, &
Pages 949-960 | Received 16 Oct 2019, Accepted 24 Apr 2020, Published online: 12 May 2020

References

  • Sevigny J, Chiao P, Bussiere T, et al. The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature. 2016;537(7618):50–56.
  • Bejoy J, Song L, Wang Z, et al. Neuroprotective activities of heparin, heparinase III, and hyaluronic acid on the Aβ42-treated forebrain spheroids derived from human stem cells. ACS Biomater Sci Eng. 2018;4(8):2922–2933.
  • Ghosh AK, Osswald HL. BACE1 (β-secretase) inhibitors for the treatment of Alzheimer’s disease. Chem Soc Rev. 2014;43(19):6765–6813.
  • Johnson GL, Lapadat R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science. 2002;298(5600):1911–1912.
  • Alzheimer’s Association. 2017 Alzheimer’s disease facts and figures. Alzheimers Dement. 2017;13:325–373.
  • Costs of Alzheimer’s to Medicare and Medicaid, Alzheimer’s Association Fact Sheet; [accessed 2019 Oct 16]; 2017. Available from: http://act.alz.org/site/DocServer/2012_Costs_Fact_Sheet_version_2.pdf?docID=7161
  • Kuo YC, Rajesh R. A critical overview of therapeutic strategy and advancement for Alzheimer’s disease treatment. J Taiwan Inst Chem Eng. 2017;77:92–105.
  • Pei J-J, Gong C-X, An W-L, et al. Okadaic-acid-induced inhibition of protein phosphatase 2a produces activation of mitogen-activated protein kinases ERK1/2, MEK1/2, and p70 S6, similar to that in Alzheimer’s disease. Am J Pathol. 2003;163(3):845–858.
  • Alessi DR, Cuenda A, Cohen P, et al. PD 098059 is a specific inhibitor of the activation of mitogen-activated protein kinase kinase in vitro and in vivo. J Biol Chem. 1995;270(46):27489–27494.
  • Kulkarni PR, Yadav JD, Vaidya KA. Liposomes: a novel drug delivery system. Int J Curr Pharm Res. 2011;2:10–18.
  • Spuch C, Navarro C. Liposomes for targeted delivery of active agents against neurodegenerative diseases (Alzheimer’s disease and Parkinson’s disease). J Drug Deliv. 2011;2011:1–12.
  • Schnyder A, Huwyler J. Drug transport to brain with targeted liposomes. NeuroRx. 2005;2(1):99–107.
  • Choi GN, Kim JH, Kwak JH, et al. Effect of quercetin on learning and memory performance in ICR mice under neurotoxic trimethyltin exposure. Food Chem. 2012;132(2):1019–1024.
  • Skibola CF, Smith MT. Potential health impacts of excessive flavonoid intake. Free Radic Biol Med. 2000;29(3–4):375–383.
  • Ishikawa Y, Kitamura M. Anti-apoptotic effect of quercetin: intervention in the JNK- and ERK-mediated apoptotic pathways. Kidney Int. 2000;58(3):1078–1087.
  • Whitmarsh AJ, Davis RJ. Transcription factor AP-1 regulation by mitogen-activated protein kinase signal transduction pathways. J Mol Med. 1996;74(10):589–607.
  • Zhu F, Asada T, Sato A, et al. Rosmarinic acid extract for antioxidant, antiallergic, and α-glucosidase inhibitory activities, isolated by supramolecular technique and solvent extraction from perilla leaves. J Agric Food Chem. 2014;62(4):885–892.
  • Javanmardi J, Khalighi A, Kashi A, et al. Chemical characterization of basil (Ocimum basilicum L.) found in local accessions and used in traditional medicines in Iran. J Agric Food Chem. 2002;50(21):5878–5883.
  • Priprem A, Watanatorn J, Sutthiparinyanont S, et al. Anxiety and cognitive effects of quercetin liposomes in rats. Nanomedicine. 2008;4(1):70–78.
  • Donahue JE, Johanson CE. Apolipoprotein E, amyloid-beta, and blood–brain barrier permeability in Alzheimer disease. J Neuropathol Exp Neurol. 2008;67(4):261–270.
  • Sauer I, Dunay IR, Weisgraber K, et al. An apolipoprotein E-derived peptide mediates uptake of sterically stabilized liposomes into brain capillary endothelial cells. Biochemistry. 2005;44(6):2021–2029.
  • Mauch DH, Nagler K, Schumacher S, et al. CNS synaptogenesis promoted by glia-derived cholesterol. Science. 2001;294(5545):1354–1357.
  • Bereczki E, Re F, Masserini ME, et al. Liposomes functionalized with acidic lipids rescue Aβ-induced toxicity in murine neuroblastoma cells. Nanomedicine. 2011;7(5):560–571.
  • Junyaprasert VP, Teeranachaideekul V, Supaperm T. Effect of charged and non-ionic membrane additives on physicochemical properties and stability of niosomes. AAPS Pharm Sci Tech. 2008;9:851–859.
  • Bhai MSA, Vandana Y, Mamatha Y, et al. Liposomes: an overview. J Pharm Sci Innov. 2012;1:13–21.
  • Re F, Cambianica I, Sesana S, et al. Functionalization with ApoE-derived peptides enhances the interaction with brain capillary endothelial cells of nanoliposomes binding amyloid-beta peptide. J Biotechnol. 2011;156(4):341–346.
  • Neves AR, Queiroz JF, Weksler B, et al. Solid lipid nanoparticles as a vehicle for brain-targeted drug delivery: two new strategies of functionalization with apolipoprotein E. Nanotechnology. 2015;26(49):495103.
  • Willaime-Morawek S, Brami-Cherrier K, Mariani J, et al. c-Jun N-terminal kinases/c-Jun and p38 pathways cooperate in ceramide-induced neuronal apoptosis. Neuroscience. 2003;119(2):387–397.
  • Iuvone T, Filippis DD, Esposito G, et al. The spice sage and its active ingredient rosmarinic acid protect PC12 cells from amyloid-beta peptide-induced neurotoxicity. J Pharmacol Exp Ther. 2006;317(3):1143–1149.
  • Wang JB, Wang YM, Zeng CM. Quercetin inhibits amyloid fibrillation of bovine insulin and destabilizes preformed fibrils. Biochem Biophys Res Commun. 2011;415(4):675–679.
  • Alkam T, Nitta A, Mizoguchi H, et al. A natural scavenger of peroxynitrites, rosmarinic acid, protects against impairment of memory induced by Aβ (25-35). Behav Brain Res. 2007;180(2):139–145.
  • Licastro F, Pedrini S, Caputo L, et al. Increased plasma levels of interleukin-1, interleukin-6 and α-1-antichymotrypsin in patients with Alzheimer’s disease: peripheral inflammation or signals from the brain. J Neuroimmunol. 2000;103(1):97–102.
  • Sondag CM, Dhawan G, Combs CK. Beta amyloid oligomers and fibrils stimulate differential activation of primary microglia. J Neuroinflammation. 2009;6(1):1–176.
  • Hensley K, Floyd RA, Zheng N-Y, et al. p38 kinase is activated in the Alzheimer’s disease brain. J Neurochem. 2008;72(5):2053–2058.
  • Khan S, Ahmad K, Alshammari EMA, et al. Implication of caspase-3 as a common therapeutic target for multineurodegenerative disorders and its inhibition using nonpeptidyl natural compounds. BioMed Res Int. 2015;2015:1–9.
  • Franco M, Roswall P, Cortez E, et al. Pericytes promote endothelial cell survival through induction of autocrine VEGF-A signaling and Bcl-w expression. Blood. 2011;118(10):2906–2917.
  • Yao Y, Chen ZL, Norris EH, et al. Astrocytic laminin regulates pericyte differentiation and maintains blood brain barrier integrity. Nature. 2014;5:1–12.
  • Liu CC, Kanekiyo T, Xu H, et al. Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat Rev Neurol. 2013;9(2):106–118.
  • Kreuter J, Zensi A, Begley D, et al. Albumin nanoparticles targeted with ApoE enter the CNS by transcytosis and are delivered to neurons. J Control Release. 2009;137(1):78–86.
  • Bana L, Minniti S, Salvati E, et al. Liposomes bi-functionalized with phosphatidic acid and an ApoE-derived peptide affect Aβ aggregation features and cross the blood–brain-barrier: implications for therapy of Alzheimer disease. Nanomedicine. 2014;10(7):1583–1590.
  • Wagner S, Zensi A, Wien SL, et al. Uptake mechanism of ApoE-modified nanoparticles on brain capillary endothelial cells as a blood–brain barrier model. PLoS One. 2012;7(3):e32568.
  • Oddo S, Caccamo A, Tran L, et al. Temporal profile of amyloid-β (Aβ) oligomerization in an in vivo model of Alzheimer disease – a link between Aβ and tau pathology. J Biol Chem. 2006;281(3):1599–15604.
  • Pardridge WM. Drug targeting to the brain. Pharm Res. 2007;24(9):1733–1744.
  • Shamenkov DA, Petrov VE, Alyautdin RN. Effects of apolipoproteins on dalargin transport across the blood–brain barrier. Bull Exp Biol Med. 2006;142(6):703–706.
  • Tiewcharoen S, Rabablert J, Chetanachan P, et al. Scanning electron microscopic study of human neuroblastoma cells affected with Naegleria fowleri Thai strains. Parasitol Res. 2008;103(5):1119–1123.
  • Banks WA, Kastin AJ, Gutierrez EG. Penetration of interleukin-6 across the murine blood–brain barrier. Neurosci Lett. 1994;179(1–2):53–56.
  • Takeda S, Sato N, Ikimura K, et al. Increased blood–brain barrier vulnerability to systemic inflammation in an Alzheimer’s disease mouse model. Neurobiol Aging. 2013;34(8):2064–2070.
  • Quintanilla RA, Orellana DI, Billault CG, et al. Interleukin-6 induces Alzheimer-type phosphorylation of tau protein by deregulation the cdk5/p35 pathway. Exp Cell Res. 2004;295(1):245–257.
  • Zhu X, Castellani RJ, Takeda A, et al. Differential activation of neuronal ERK, JNK/SAPK and p38 in Alzheimer’s disease: the two hit hypothesis. Mech Ageing Dev. 2001;123(1):39–46.
  • Botana LM, Leiros M, Alonso E, et al. The Streptomyces metabolite anhydroexfoliamycin ameliorates hallmarks of Alzheimer’s disease in vitro and in vivo. Neuroscience. 2015;305:26–35.
  • Galimberti D, Scarpini E. Progress in Alzheimer’s disease. J Neurol. 2012;259(2):201–211.
  • Huang HC, Jiang ZF. Accumulated amyloid-beta peptide and hyperphosphorylated tau protein: relationship and links in Alzheimer’s disease. J Alzheimers Dis. 2009;16(1):15–27.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.