332
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

T807-modified human serum albumin biomimetic nanoparticles for targeted drug delivery across the blood–brain barrier

, , , , , , & show all
Pages 1085-1095 | Received 27 Mar 2020, Accepted 30 May 2020, Published online: 14 Jul 2020

References

  • Neuwelt E, Abbott NJ, Abrey L, et al. Strategies to advance translational research into brain barriers. Lancet Neurol. 2008;7:84–96.
  • Wu LP, Ahmadvand D, Su J, et al. Crossing the blood-brain-barrier with nanoligand drug carriers self-assembled from a phage display peptide. Nat Commun. 2019;10:4635.
  • Banks WA. From blood-brain barrier to blood-brain interface: new opportunities for CNS drug delivery. Nat Rev Drug Discov. 2016;15:275–292.
  • Daneman R, Zhou L, Kebede AA, et al. Pericytes are required for blood-brain barrier integrity during embryogenesis. Nature. 2010;468:562–566.
  • Moghimi SM, Howard KA. Targeting biological barriers: turning a wall into a therapeutic springboard. Mol Ther. 2018;26:933–934.
  • Tietjen GT, Bracaglia LG, Saltzman WM, et al. Focus on fundamentals: achieving effective nanoparticle targeting. Trends Mol Med. 2018;24:598–606.
  • Pang XY, Yang P, Wang LC, et al. Human serum albumin nanoparticulate system with encapsulation of gefitinib for enhanced anti-tumor effects in non-small cell lung cancer. J Drug Deliv Sci Technol. 2019; 52:997–1007.
  • Yang S, Jin H, Zhao ZG. An ECV304 monoculture model for permeability assessment of blood-brain barrier. Neurol Res. 2018;40:117–121.
  • Luis de Redín I, Boiero C, Martínez-Ohárriz MC, et al. Human serum albumin nanoparticles for ocular delivery of bevacizumab. Int J Pharm. 2018;541:214–223.
  • Akbal O, Vural T, Malekghasemi S, et al. Saponin loaded montmorillonite-human serum albumin nanocomposites as drug delivery system in colorectal cancer therapy. Appl Clay Sci. 2018; 166:214–222.
  • Hosseinpour Moghadam N, Salehzadeh S, Rakhtshah J, et al. Preparation of a highly stable drug carrier by efficient immobilization of human serum albumin (HSA) on drug-loaded magnetic iron oxide nanoparticles. Int J Biol Macromol. 2019; 125:931–940.
  • Hahn A, Schain M, Erlandsson M, et al. Modeling strategies for quantification of in vivo 18F-AV1451 binding in patients with tau pathology. J Nucl Med. 2017;58:623–647.
  • Chen Q, Du Y, Zhang K, et al. Tau-targeted multifunctional nanocomposite for combinational therapy of Alzheimer's disease. ACS Nano. 2018;12:1321–1338.
  • Fu SY, Liang M, Wang YL, et al. Dual-modified novel biomimetic nanoparticles improve targeting and therapeutic efficacy in glioma. ACS Appl Mater Interfaces. 2019;11:1841–1854.
  • Chai ZL, Hu XF, Wei XL, et al. A facile approach to functionalizing cell membrane-coated nanoparticles with neurotoxin-derived peptide for brain-targeted drug delivery. J Control Release. 2017; 264:102–111.
  • Chai ZL, Ran D, Lu LW, et al. Ligand-modified cell membrane enables the targeted delivery of drug nanocrystals to glioma. ACS Nano. 2019;13:5591–5601.
  • Bernas MJ, Cardoso FL, Daley SK, et al. Establishment of primary cultures of human brain microvascular endothelial cells to provide an in vitro cellular model of the blood-brain barrier. Nat Protoc. 2010;5:1265–1272.
  • Wan X, Zheng X, Pang X, et al. The potential use of lapatinib-loaded human serum albumin nanoparticles in the treatment of triple-negative breast cancer. Int J Pharm. 2015;484:16–28.
  • Chien DT, Bahri S, Szardenings AK, et al. Early clinical PET imaging results with the novel PHF-tau radioligand [F-18]-T807. J Alzheimers Dis. 2013;34:457–468.
  • Lin T, Zhao P, Jiang Y, et al. Blood-brain-barrier-penetrating albumin nanoparticles for biomimetic drug delivery via albumin-binding protein pathways for antiglioma therapy. ACS Nano. 2016;10:9999–10012.
  • Fang R H, Jiang Y, Fang J C, et al. Cell membrane-derived nanomaterials for biomedical applications. Biomaterials. 2017;128:69–83.
  • Yavarpour-Bali H, Ghasemi-Kasman M, Pirzadeh M. Curcumin-loaded nanoparticles: a novel therapeutic strategy in treatment of central nervous system disorders. Int J Nanomedicine. 2019; 14:4449–4460.
  • Saeedi M, Eslamifar M, Khezri K, et al. Applications of nanotechnology in drug delivery to the central nervous system. Biomed Pharmacother. 2019; 111:666–675.
  • Kumar P, Nagarajan A, Uchil PD. Analysis of cell viability by the MTT assay. Cold Spring Harb Protoc. 2018. DOI:10.1101/pdb.prot095505
  • O'Brown NM, Pfau SJ, Gu C. Bridging barriers: a comparative look at the blood-brain barrier across organisms. Genes Dev. 2018;32:466–478.
  • Tapeinos C, Battaglini M, Ciofani G. Advances in the design of solid lipid nanoparticles and nanostructured lipid carriers for targeting brain diseases. J Control Release. 2017; 264:306–332.
  • De Lange ECM, Vd Berg DJ, Bellanti F, et al. P-Glycoprotein protein expression versus functionality at the blood-brain barrier using immunohistochemistry, microdialysis and mathematical modeling. Eur J Pharm Sci. 2018; 124:61–70.
  • Taneja N, Singh KK. Rational design of polysorbate 80 stabilized human serum albumin nanoparticles tailored for high drug loading and entrapment of irinotecan. Int J Pharmaceut. 2018;536:82–94.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.