1,036
Views
12
CrossRef citations to date
0
Altmetric
Review Articles

Envelope proteins as antiviral drug target

, &
Pages 1046-1052 | Received 17 Apr 2020, Accepted 03 Jul 2020, Published online: 17 Jul 2020

References

  • Woolhouse M, Gaunt E. Ecological origins of novel human pathogens. Crit Rev Microbiol. 2007;33(4):231–242.
  • Parrish CR, Holmes EC, Morens DM, et al. Cross-species virus transmission and the emergence of new epidemic diseases. Microbiol Mol Biol Rev. 2008;72(3):457–470.
  • Coronavirus disease (COVID_19) pandemic [Internet]. 2019; [cited 2020 Apr 15]. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019
  • De Clercq E, Li G. Approved antiviral drugs over the past 50 years. Clin Microbiol Rev. 2016;29(3):695–747.
  • Mazzon M, Marsh M. Targeting viral entry as a strategy for broad-spectrum antivirals [version 1; peer review: 3 approved]. F1000Res. 2019;8:1628.
  • Buchmann JP, Holmes EC. Cell walls and the convergent evolution of the viral envelope. Microbiol Mol Biol Rev. 2015;79(4):403–418.
  • WuDunn D, Spear PG. Initial interaction of herpes simplex virus with cells is binding to heparan sulfate. J Virol. 1989;63(1):52–58.
  • Barth H, Schäfer C, Adah MI, et al. Cellular binding of hepatitis c virus envelope glycoprotein e2 requires cell surface heparan sulfate. J Biol Chem. 2003;278(42):41003–41012.
  • Teissier E, Penin F, Pécheur EI. Targeting cell entry of enveloped viruses as an antiviral strategy. Molecules. 2011;16(1):221–250.
  • Schornberg K, Matsuyama S, Kabsch K, et al. Role of endosomal cathepsins in entry mediated by the Ebola virus glycoprotein. J Virol. 2006;80(8):4174–4178.
  • Martín CSS, Liu CY, Kielian M. Dealing with low pH: entry and exit of alphaviruses and flaviviruses. Trends Microbiol. 2009;17(11):514–521.
  • Smit JM, Moesker B, Rodenhuis-Zybert I, et al. Flavivirus cell entry and membrane fusion. Viruses. 2011;3(2):160–171.
  • Lakadamyali M, Rust MJ, Zhuang X. Endocytosis of influenza viruses. Microbes Infect. 2004;6(10):929–936.
  • Harrison SC. Mechanism of membrane fusion by viral envelope proteins. Adv Virus Res. 2005;64:231–261.
  • Aguilar HC, Henderson BA, Zamora JL, et al. Paramyxovirus glycoproteins and the membrane fusion process. Curr Clin Micro Rpt. 2016;3(3):142–154.
  • Hernandez LD, Hoffman LR, Wolfsberg TG, et al. Virus-cell and cell-cell fusion. Annu Rev Cell Dev Biol. 1996;12:627–661.
  • Dimitrov DS. Virus entry: molecular mechanisms and biomedical applications. Nat Rev Microbiol. 2004;2(2):109–122.
  • Cosset FL, Lavillette D. Cell entry of enveloped viruses. Adv Genet. 2011;73:121–83.
  • White JM, Whittaker GR. Fusion of enveloped viruses in endosomes. Traffic. 2016;17(6):593–614.
  • Tang T, Bidon M, Jaimes JA, et al. Coronavirus membrane fusion mechanism offers a potential target for antiviral development. Antiviral Res. 2020;178:104792.
  • Colman PM, Lawrence MC. The structural biology of type I viral membrane fusion. Nat Rev Mol Cell Biol. 2003;4(4):309–319.
  • Schibli DJ, Weissenhorn W. Class I and class II viral fusion protein structures reveal similar principles in membrane fusion. Mol Membr Biol. 2004;21(6):361–371.
  • White JM, Delos SE, Brecher M, et al. Structures and mechanisms of viral membrane fusion proteins: multiple variations on a common theme. Crit Rev Biochem Mol Biol. 2008;43(3):189–219.
  • Porotto M, Yokoyama CC, Palermo LM, et al. Viral entry inhibitors targeted to the membrane site of action. J Virol. 2010;84(13):6760–6768.
  • Kielian M. Class II virus membrane fusion proteins. Virology. 2006;344(1):38–47.
  • Kielian M, Rey FA. Virus membrane-fusion proteins: more than one way to make a hairpin. Nat Rev Microbiol. 2006;4(1):67–76.
  • Rey FA, Lok SM. Common features of enveloped viruses and implications for immunogen design for next-generation vaccines. Cell Cell Press. 2018;172(6):1319–1334.
  • Roche S, Bressanelli S, Rey FA, et al. Crystal structure of the low-pH form of the vesicular stomatitis virus glycoprotein G. Science. 2006;313:187–191.
  • Kadlec J, Loureiro S, Abrescia NGA, et al. The postfusion structure of baculovirus gp64 supports a unified view of viral fusion machines. Nat Struct Mol Biol. 2008;15(10):1024–1030.
  • Backovic M, Longnecker R, Jardetzky TS. Structure of a trimeric variant of the Epstein-Barr virus glycoprotein B. Proc Natl Acad Sci USA. 2009;106(8):2880–2885.
  • Backovic M, Jardetzky TS. Class III viral membrane fusion proteins. Adv Exp Med Biol. 2011;950:91–101.
  • Kim IS, Jenni S, Stanifer ML, et al. Mechanism of membrane fusion induced by vesicular stomatitis virus G protein. Proc Natl Acad Sci USA. 2017;114(1):E28–E36.
  • Guo Q, Ho H-T, Dicker I, et al. Biochemical and genetic characterizations of a novel human immunodeficiency virus type 1 inhibitor that blocks gp120-CD4 interactions. J Virol. 2003;77(19):10528–10536.
  • Zhao Q, Ma L, Jiang S, et al. Identification of N-phenyl-N'-(2,2,6,6-tetramethyl-piperidin-4-yl)-oxalamides as a new class of HIV-1 entry inhibitors that prevent gp120 binding to CD4.Virology.2005;339(2):213–225.
  • Eşanu V, Prahoveanu E, Crişan I, et al. The effect of an aqueous propolis extract, of rutin and of a rutin-quercetin mixture on experimental influenza virus infection in mice. Virologie.1981;32(3):213–215.
  • Zu M, Yang F, Zhou W, et al. In vitro anti-influenza virus and anti-inflammatory activities of theaflavin derivatives. Antiviral Res. 2012;94(3):217–224.
  • Chen X, Si L, Liu D, et al. Neoechinulin B and its analogues as potential entry inhibitors of influenza viruses, targeting viral hemagglutinin. Eur J Med Chem. 2015;93:182–195.
  • Rossignol J-F. Nitazoxanide: a first-in-class broad-spectrum antiviral agent. Antiviral Res. 2014; 110:94–103.
  • Adedeji AO, Severson W, Jonsson C, et al. Novel inhibitors of SARS-CoV entry acting by three distinct mechanisms. J Virol. 2013;87(14):8017–8028.
  • Kao RY, Tsui WHW, Lee TSW, et al. Identification of novel small-molecule inhibitors of severe acute respiratory syndrome-associated coronavirus by chemical genetics. Chem Biol. 2004;11(9):1293–1299.
  • Ho T-Y, Wu S-L, Chen J-C, et al. Emodin blocks the SARS coronavirus spike protein and angiotensin-converting enzyme 2 interaction. Antiviral Res. 2007;74(2):92–101.
  • VanCompernolle SE, Wiznycia AV, Rush JR, et al. Small molecule inhibition of hepatitis C virus E2 binding to CD81. Virology. 2003;314(1):371–380.
  • Fernando S, Fernando T, Stefanik M, et al. An approach for Zika virus inhibition using homology structure of the envelope protein. Mol Biotechnol. 2016;58(12):801–806.
  • Deeba F, Malik MZ, Naqvi IH, et al. Potential entry inhibitors of the envelope protein (E2) of Chikungunya virus: in silico structural modeling, docking and molecular dynamic studies. Virusdisease. 2017;28(1):39–49.
  • Debnath AK, Radigan L, Jiang S. Structure-based identification of small molecule antiviral compounds targeted to the gp41 core structure of the human immunodeficiency virus type 1. J Med Chem. 1999;42(17):3203–3209.
  • Zhao G, Du L, Ma C, et al. A safe and convenient pseudovirus-based inhibition assay to detect neutralizing antibodies and screen for viral entry inhibitors against the novel human coronavirus MERS-CoV. Virol J. 2013;10:266.
  • Sun Z, Pan Y, Jiang S, et al. Respiratory syncytial virus entry inhibitors targeting the F protein. Viruses. 2013;5(1):211–225.
  • Jorquera PA, Tripp RA. Respiratory syncytial virus: prospects for new and emerging therapeutics [Internet]. Expert Rev Respir Med. 2017;11(8):609–615.
  • Niedermeier S, Singethan K, Rohrer SG, et al. A small-molecule inhibitor of Nipah virus envelope protein-mediated membrane fusion. J Med Chem. 2009;52(14):4257–4265.
  • Pope LE, Marcelletti JF, Katz LR, et al. The anti-herpes simplex virus activity of n-docosanol includes inhibition of the viral entry process. Antiviral Res. 1998;40(1-2):85–94.
  • Yoshimoto J, Yagi S, Ono J, et al. Development of anti-influenza drugs: II. Improvement of oral and intranasal absorption and the anti-influenza activity of stachyflin derivatives. J Pharm Pharmacol. 2000;52(10):1247–1255.
  • Luo G, Colonno R, Krystal M. Characterization of a hemagglutinin-specific inhibitor of influenza A virus. Virology. 1996;226(1):66–76.
  • Basu A, Antanasijevic A, Wang M, et al. New small molecule entry inhibitors targeting hemagglutinin-mediated influenza a virus fusion. J Virol. 2014;88(3):1447–1460.
  • Basu A, Li B, Mills DM, et al. Identification of a small-molecule entry inhibitor for filoviruses. J Virol. 2011;85(7):3106–3119.
  • Basu A, Mills DM, Mitchell D, et al. Novel small molecule entry inhibitors of Ebola virus. J Infect Dis. 2015;212(suppl 2):S425–S434.
  • Powers CN, Setzer W. An in-silico investigation of phytochemicals as antiviral agents against dengue fever. Comb Chem. 2016;19(7):516–536.
  • Yang J-M, Chen Y-F, Tu Y-Y, et al. Combinatorial computational approaches to identify tetracycline derivatives as flavivirus inhibitors. PLoS One. 2007;2(5):e428.
  • De La Guardia C, Lleonart R. Progress in the identification of dengue virus entry/fusion inhibitors. Biomed Res Int. 2014;2014:1–13.
  • Boldescu V, Behnam MAM, Vasilakis N, et al. Broad-spectrum agents for flaviviral infections: Dengue, Zika and beyond. Nat Rev Drug Discov. 2017;16(8):565–586.
  • Boriskin Y, Leneva I, Pecheur E-I, et al. Arbidol: a broad-spectrum antiviral compound that blocks viral fusion. Curr Med Chem. 2008;15(10):997–1005.
  • Bush CO, Pokrovskii MV, Saito R, et al. A small-molecule inhibitor of hepatitis C virus infectivity. Antimicrob Agents Chemother. 2014;58(1):386–396.
  • Pitts J, Hsia CY, Lian W, et al. Identification of small molecule inhibitors targeting the Zika virus envelope protein. Antiviral Res. 2019;164:147–153.
  • Dille BJ, Johnson TC. Inhibition of vesicular stomatitis virus glycoprotein expression of chloroquine. J Gen Virol. 1982;62(1):91–103.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.