400
Views
4
CrossRef citations to date
0
Altmetric
Review Articles

Fabrication techniques for the preparation of orally administered insulin nanoparticles

, & ORCID Icon
Pages 365-386 | Received 17 May 2020, Accepted 25 Aug 2020, Published online: 22 Feb 2021

References

  • Bhattacharyya A, Nasim F, Mishra R, et al. Polyurethane‐incorporated chitosan/alginate core–shell nano‐particles for controlled oral insulin delivery. J Appl Polym Sci. 2018;135(26):46365.
  • Wong CY, Martinez J, Dass CR. Oral delivery of insulin for treatment of diabetes: Status quo, challenges and opportunities. J Pharm Pharmacol. 2016;68(9):1093–1108.
  • Zhang Z, Cai H, Liu Z, et al. Effective enhancement of hypoglycemic effect of insulin by liver-targeted nanoparticles containing cholic acid-modified chitosan derivative. Mol Pharm. 2016;13(7):2433–2442.
  • Zhang X, Sun M, Zheng A, et al. Preparation and characterization of insulin-loaded bioadhesive plga nanoparticles for oral administration. Eur J Pharm Sci. 2012;45(5):632–638.
  • Chalasani KB, Russell-Jones GJ, Yandrapu SK, et al. A novel vitamin b12-nanosphere conjugate carrier system for peroral delivery of insulin. J Control Release. 2007;117(3):421–429.
  • Fonte P, Nogueira T, Gehm C, et al. Chitosan-coated solid lipid nanoparticles enhance the oral absorption of insulin. Drug Deliv Transl Res. 2011;1(4):299–308.
  • Sarmento B, Ribeiro A, Veiga F, et al. Alginate/chitosan nanoparticles are effective for oral insulin delivery. Pharm Res. 2007;24(12):2198–2206.
  • Lopes MA, Abrahim-Vieira B, Oliveira C, et al. Probing insulin bioactivity in oral nanoparticles produced by ultrasonication-assisted emulsification/internal gelation. Int J Nanomedicine. 2015;10:5865–5880.
  • Tan X, Liu X, Zhang Y, et al. Silica nanoparticles on the oral delivery of insulin. Expert Opin Drug Deliv. 2018;15(8):805–820.
  • Wong CY, Al-Salami H, Dass CR. Potential of insulin nanoparticle formulations for oral delivery and diabetes treatment. J Control Release. 2017;264:247–275.
  • Wong CY, Al-Salami H, Dass CR. Recent advancements in oral administration of insulin-loaded liposomal drug delivery systems for diabetes mellitus. Int J Pharm. 2018;549(1-2):201–217.
  • Du X, Zhang J, Zhang Y, et al. Decanoic acid grafted oligochitosan nanoparticles as a carrier for insulin transport in the gastrointestinal tract. Carbohydr Polym. 2014;111:433–441.
  • Hecq J, Siepmann F, Siepmann J, et al. Development and evaluation of chitosan and chitosan derivative nanoparticles containing insulin for oral administration. Drug Dev Ind Pharm. 2015;41(12):2037–2044.
  • Wong CY, Al-Salami H, Dass CR. Cellular assays and applied technologies for characterisation of orally administered protein nanoparticles: a systematic review. J Drug Target. 2020;28(6):585–599.
  • Li H, Zhang Z, Bao X, et al. Fatty acid and quaternary ammonium modified chitosan nanoparticles for insulin delivery. Colloids Surf B Biointerfaces. 2018;170:136–143.
  • Wong CY, Al-Salami H, Dass CR. Current status and applications of animal models in pre-clinical development of orally administered insulin-loaded nanoparticles. J Drug Target. 2020;1–22.DOI:10.1080/1061186X.2020.1759078.
  • Tong F, Liu S, Yan B, et al. Endogenous ornithine decarboxylase/polyamine system mediated the antagonist role of insulin/peg-cmcs preconditioning against heart ischemia/reperfusion injury in diabetes mellitus. Int J Nanomed. 2018;13:2507–2520.
  • Chopra S, Bertrand N, Lim JM, et al. Design of insulin-loaded nanoparticles enabled by multistep control of nanoprecipitation and zinc chelation. ACS Appl Mater Interfaces. 2017;9(13):11440–11450.
  • Zheng Y, Wu J, Shan W, et al. Multifunctional nanoparticles enable efficient oral delivery of biomacromolecules via improving payload stability and regulating the transcytosis pathway. ACS Appl Mater Interfaces. 2018;10(40):34039–34049.
  • Cui Y, Shan W, Zhou R, et al. The combination of endolysosomal escape and basolateral stimulation to overcome the difficulties of “easy uptake hard transcytosis” of ligand-modified nanoparticles in oral drug delivery. Nanoscale. 2018;10(3):1494–1507.
  • Shan W, Zhu X, Tao W, et al. Enhanced oral delivery of protein drugs using Zwitterion-functionalized nanoparticles to overcome both the diffusion and absorption barriers. ACS Appl Mater Interfaces. 2016;8(38):25444–52543.
  • Yang L, Li M, Sun Y, et al. A cell-penetrating peptide conjugated carboxymethyl-β-cyclodextrin to improve intestinal absorption of insulin. Int J Biol Macromol. 2018;111:685–695.
  • Wu J, Zheng Y, Liu M, et al. Biomimetic viruslike and charge reversible nanoparticles to sequentially overcome mucus and epithelial barriers for oral insulin delivery. ACS Appl Mater Interfaces. 2018;10(12):9916–9928.
  • Derakhshankhah H, Jafari S. Cell penetrating peptides: a concise review with emphasis on biomedical applications. Biomed Pharmacother. 2018;108:1090–1096. 2018/12/01/
  • Gessner I, Neundorf I. Nanoparticles modified with cell-penetrating peptides: conjugation mechanisms, physicochemical properties, and application in cancer diagnosis and therapy. IJMS. 2020;21(7):2536.
  • Silva S, Almeida AJ, Vale N. Combination of cell-penetrating peptides with nanoparticles for therapeutic application: a review. Biomolecules. 2019;9(1):22.
  • Sheng J, He H, Han L, et al. Enhancing insulin oral absorption by using mucoadhesive nanoparticles loaded with lmwp-linked insulin conjugates. J Control Release. 2016;233:181–190.
  • Zhang Y, Wu X, Meng L, et al. Thiolated eudragit nanoparticles for oral insulin delivery: preparation, characterization and in vivo evaluation. Int J Pharm. 2012;436(1–2):341–350.
  • Zhang Y, Du X, Zhang Y, et al. Thiolated eudragit-based nanoparticles for oral insulin delivery: Preparation, characterization, and evaluation using intestinal epithelial cells in vitro. Macromol Biosci. 2014;14(6):842–852.
  • Barreras-Urbina CG, Ramírez-Wong B, López-Ahumada GA, et al. Nano- and micro-particles by nanoprecipitation: possible application in the food and agricultural industries. Int J Food Prop. 2016;19(9):1912–1923.
  • Barichello JM, Morishita M, Takayama K, et al. Encapsulation of hydrophilic and lipophilic drugs in plga nanoparticles by the nanoprecipitation method. Drug Dev Ind Pharm. 1999;25(4):471–476.
  • Wong CY, Luna G, Martinez J, et al. Bio-nanotechnological advancement of orally administered insulin nanoparticles: comprehensive review of experimental design for physicochemical characterization. Int J Pharm. 2019;572:118720.
  • Zhang Z, Li H, Xu G, et al. Liver-targeted delivery of insulin-loaded nanoparticles via enterohepatic circulation of bile acids. Drug Deliv. 2018;25(1):1224–1233.
  • Faustino C, Serafim C, Rijo P, et al. Bile acids and bile acid derivatives: use in drug delivery systems and as therapeutic agents. Expert Opin Drug Deliv. 2016;13(8):1133–1148.
  • Tian H, He Z, Sun C, et al. Uniform core-shell nanoparticles with thiolated hyaluronic acid coating to enhance oral delivery of insulin. Adv Healthc Mater. 2018;7(17):e1800285.
  • Zeng Z, Dong C, Zhao P, et al. Scalable production of therapeutic protein nanoparticles using flash nanoprecipitation. Adv Healthc Mater. 2019;8(6):e1801010.
  • Wong CY, Al-Salami H, Dass CR. The role of chitosan on oral delivery of peptide-loaded nanoparticle formulation. J Drug Target. 2018;26(7):551–562.
  • Wong CY, Martinez J, Carnagarin R, et al. In-vitro evaluation of enteric coated insulin tablets containing absorption enhancer and enzyme inhibitor. J Pharm Pharmacol. 2017;69(3):285–294.
  • Rho JG, Han HS, Han JH, et al. Self-assembled hyaluronic acid nanoparticles: implications as a nanomedicine for treatment of type 2 diabetes. J Control Release. 2018;279:89–98.
  • Xu Y, Zheng Y, Wu L, et al. Novel solid lipid nanoparticle with endosomal escape function for oral delivery of insulin. ACS Appl Mater Interfaces. 2018;10(11):9315–9324.
  • Liu J, Gong T, Wang C, et al. Solid lipid nanoparticles loaded with insulin by sodium cholate-phosphatidylcholine-based mixed micelles: preparation and characterization. Int J Pharm. 2007;340(1-2):153–162.
  • Cui F, Shi K, Zhang L, et al. Biodegradable nanoparticles loaded with insulin-phospholipid complex for oral delivery: Preparation, in vitro characterization and in vivo evaluation. J Control Release. 2006;114(2):242–250.
  • Wong CY, Al-Salami H, Dass CR. Microparticles, microcapsules and microspheres: a review of recent developments and prospects for oral delivery of insulin. Int J Pharm. 2018;537(1–2):223–244.
  • Jain A, Jain SK. L-valine appended plga nanoparticles for oral insulin delivery. Acta Diabetol. 2015;52(4):663–676.
  • Jelvehgari M, Zakeri-Milani P, Siahi-Shadbad MR, et al. Development of ph-sensitive insulin nanoparticles using eudragit l100-55 and chitosan with different molecular weights. AAPS PharmSciTech. 2010;11(3):1237–1242.
  • Bayrami S, Esmaili Z, SeyedAlinaghi S, et al. Fabrication of long-acting insulin formulation based on poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (phbv) nanoparticles: Preparation, optimization, characterization, and in vitro evaluation. Pharm Dev Technol. 2019;24(2):176–188.
  • Sarmento B, Mazzaglia D, Bonferoni MC, et al. Effect of chitosan coating in overcoming the phagocytosis of insulin loaded solid lipid nanoparticles by mononuclear phagocyte system. Carbohyd Polym. 2011;84(3):919–925.
  • Sharma R, Gupta U, Garg NK, et al. Surface engineered and ligand anchored nanobioconjugate: an effective therapeutic approach for oral insulin delivery in experimental diabetic rats. Colloids Surf B Biointerfaces. 2015;127:172–181.
  • Hurkat P, Jain A, Jain A, et al. Concanavalin a conjugated biodegradable nanoparticles for oral insulin delivery. J Nanoparticle Res. 2012;14(11):1219.
  • Jain S, Rathi VV, Jain AK, et al. Folate-decorated plga nanoparticles as a rationally designed vehicle for the oral delivery of insulin. Nanomedicine. 2012;7(9):1311–1337.
  • Boushra M, Tous S, Fetih G, et al. Development and evaluation of viscosity-enhanced nanocarrier (ven) for oral insulin delivery. Int J Pharm. 2016;511(1):462–472.
  • Fonte P, Lino PR, Seabra V, et al. Annealing as a tool for the optimization of lyophilization and ensuring of the stability of protein-loaded plga nanoparticles. Int J Pharm. 2016;503(1–2):163–173.
  • Boushra M, Tous S, Fetih G, et al. Methocel-lipid hybrid nanocarrier for efficient oral insulin delivery. J Pharm Sci. 2016;105(5):1733–1740.
  • Liu X, Liu C, Zhang W, et al. Oligoarginine-modified biodegradable nanoparticles improve the intestinal absorption of insulin. Int J Pharm. 2013;448(1):159–167.
  • Zhang ZH, Zhang YL, Zhou JP, et al. Solid lipid nanoparticles modified with stearic acid-octaarginine for oral administration of insulin. Int J Nanomedicine. 2012;7:3333–3339.
  • Zhang ZH, Lv HX, Zhou JP. Novel solid lipid nanoparticles as carriers for oral administration of insulin. Pharmazie. 2009;64(9):574–578.
  • Chalasani KB, Russell-Jones GJ, Jain AK, et al. Effective oral delivery of insulin in animal models using vitamin b12-coated dextran nanoparticles. J Control Release. 2007;122(2):141–150.
  • Zhang N, Ping Q, Huang G, et al. Lectin-modified solid lipid nanoparticles as carriers for oral administration of insulin. Int J Pharm. 2006;327(1–2):153–159.
  • Sgorla D, Lechanteur A, Almeida A, et al. Development and characterization of lipid-polymeric nanoparticles for oral insulin delivery. Expert Opin Drug Deliv. 2018;15(3):213–222.
  • Czuba E, Diop M, Mura C, et al. Oral insulin delivery, the challenge to increase insulin bioavailability: Influence of surface charge in nanoparticle system. Int J Pharm. 2018;542(1-2):47–55.
  • Reix N, Parat A, Seyfritz E, et al. In vitro uptake evaluation in caco-2 cells and in vivo results in diabetic rats of insulin-loaded plga nanoparticles. Int J Pharm. 2012;437(1–2):213–220.
  • Davaran S, Omidi Y, Mohammad RR, et al. Preparation and in vitro evaluation of linear and star-branched plga nanoparticles for insulin delivery. J Bioact Compat Polym. 2008;23(2):115–131.
  • Sheng J, Han L, Qin J, et al. N-trimethyl chitosan chloride-coated plga nanoparticles overcoming multiple barriers to oral insulin absorption. ACS Appl Mater Interfaces. 2015;7(28):15430–15441.
  • Yu F, Li Y, Liu CS, et al. Enteric-coated capsules filled with mono-disperse micro-particles containing plga-lipid-peg nanoparticles for oral delivery of insulin. Int J Pharm. 2015;484(1-2):181–191.
  • Viehof A, Javot L, Beduneau A, et al. Oral insulin delivery in rats by nanoparticles prepared with non-toxic solvents. Int J Pharm. 2013;443(1–2):169–174.
  • Wu ZM, Zhou L, Guo XD, et al. Hp55-coated capsule containing plga/rs nanoparticles for oral delivery of insulin. Int J Pharm. 2012;425(1–2):1–8.
  • Damge C, Socha M, Ubrich N, et al. Poly(epsilon-caprolactone)/eudragit nanoparticles for oral delivery of aspart-insulin in the treatment of diabetes. J Pharm Sci. 2010;99(2):879–889.
  • Damge C, Maincent P, Ubrich N. Oral delivery of insulin associated to polymeric nanoparticles in diabetic rats. J Control Release. 2007;117(2):163–170.
  • Cui FD, Tao AJ, Cun DM, et al. Preparation of insulin loaded plga-hp55 nanoparticles for oral delivery. J Pharm Sci. 2007;96(2):421–427.
  • Liu J, Zhang SM, Chen PP, et al. Controlled release of insulin from plga nanoparticles embedded within pva hydrogels. J Mater Sci Mater Med. 2007;18(11):2205–2210.
  • Wong CY, Martinez J, Al-Salami H, et al. Quantification of bsa-loaded chitosan/oligonucleotide nanoparticles using reverse-phase high-performance liquid chromatography. Anal Bioanal Chem. 2018;410(27):6991–7006.
  • Sun S, Liang N, Piao H, et al. Insulin-s.O (sodium oleate) complex-loaded plga nanoparticles: Formulation, characterization and in vivo evaluation. J Microencapsul. 2010;27(6):471–478.
  • Ristroph KD, Prud'homme RK. Hydrophobic ion pairing: encapsulating small molecules, peptides, and proteins into nanocarriers. Nanoscale Adv. 2019;1(11):4207–4237.
  • Sun S, Liang N, Kawashima Y, et al. Hydrophobic ion pairing of an insulin-sodium deoxycholate complex for oral delivery of insulin. Int J Nanomedicine. 2011;6:3049–3056.
  • Sun S, Liang N, Yamamoto H, et al. Ph-sensitive poly(lactide-co-glycolide) nanoparticle composite microcapsules for oral delivery of insulin. Int J Nanomedicine. 2015;10:3489–3498.
  • Elsayed AM, Khaled AH, Al Remawi MM, et al. Low molecular weight chitosan-insulin complexes solubilized in a mixture of self-assembled labrosol and plurol oleaque and their glucose reduction activity in rats. Mar Drugs. 2018;16(1):32.
  • Sun S, Cui F, Kawashima Y, et al. A novel insulin-sodium oleate complex for oral administration: preparation, characterization and in vivo evaluation. J Drug Deliv Sci Technol. 2008;18(4):239–243.
  • Avadi MR, Sadeghi AM, Mohamadpour Dounighi N, et al. Ex vivo evaluation of insulin nanoparticles using chitosan and arabic gum. ISRN Pharm. 2011;2011:860109.
  • Lin YH, Chen CT, Liang HF, et al. Novel nanoparticles for oral insulin delivery via the paracellular pathway. Nanotechnology. 2007;18(10):105102.
  • Woitiski CB, Veiga F, Ribeiro A, et al. Design for optimization of nanoparticles integrating biomaterials for orally dosed insulin. Eur J Pharm Biopharm. 2009;73(1):25–33.
  • Woitiski CB, Neufeld RJ, Ribeiro AJ, et al. Colloidal carrier integrating biomaterials for oral insulin delivery: influence of component formulation on physicochemical and biological parameters. Acta Biomater. 2009;5(7):2475–2484.
  • Sajeesh S, Sharma CP. Cyclodextrin-insulin complex encapsulated polymethacrylic acid based nanoparticles for oral insulin delivery. Int J Pharm. 2006;325(1-2):147–154.
  • Sonaje K, Chen YJ, Chen HL, et al. Enteric-coated capsules filled with freeze-dried chitosan/poly(gamma-glutamic acid) nanoparticles for oral insulin delivery. Biomaterials. 2010;31(12):3384–3394.
  • Sonaje K, Lin KJ, Wey SP, et al. Biodistribution, pharmacodynamics and pharmacokinetics of insulin analogues in a rat model: oral delivery using ph-responsive nanoparticles vs. subcutaneous injection. Biomaterials. 2010;31(26):6849–6858.
  • Sonaje K, Lin KJ, Wang JJ, et al. Self-assembled ph-sensitive nanoparticles: a platform for oral delivery of protein drugs. Adv Funct Mater. 2010;20(21):3695–3700.
  • Ke Z, Guo H, Zhu X, et al. Efficient peroral delivery of insulin via vitamin b12 modified trimethyl chitosan nanoparticles. J Pharm Pharm Sci. 2015;18(2):155–170.
  • Sarmento B, Ribeiro AJ, Veiga F, et al. Insulin-loaded nanoparticles are prepared by alginate ionotropic pre-gelation followed by chitosan polyelectrolyte complexation. J Nanosci Nanotechnol. 2007;7(8):2833–2841.
  • Sarmento B, Ferreira DC, Jorgensen L, et al. Probing insulin’'s secondary structure after entrapment into alginate/chitosan nanoparticles. Eur J Pharm Biopharm. 2007;65(1):10–17.
  • Woitiski CB, Neufeld RJ, Veiga F, et al. Pharmacological effect of orally delivered insulin facilitated by multilayered stable nanoparticles. Eur J Pharm Sci. 2010;41(3-4):556–563.
  • Jintapattanakit A, Junyaprasert VB, Mao S, et al. Peroral delivery of insulin using chitosan derivatives: a comparative study of polyelectrolyte nanocomplexes and nanoparticles. Int J Pharm. 2007;342(1–2):240–249.
  • Avadi MR, Sadeghi AM, Mohammadpour N, et al. Preparation and characterization of insulin nanoparticles using chitosan and arabic gum with ionic gelation method. Nanomedicine. 2010;6(1):58–63.
  • Reis CP, Ribeiro AJ, Veiga F, et al. Polyelectrolyte biomaterial interactions provide nanoparticulate carrier for oral insulin delivery. Drug Deliv. 2008;15(2):127–139.
  • Sarmento B, Ferreira D, Veiga F, et al. Characterization of insulin-loaded alginate nanoparticles produced by ionotropic pre-gelation through DSC and FTIR studies. Carbohyd Polym. 2006;66(1):1–7.
  • Zhang N, Li J, Jiang W, et al. Effective protection and controlled release of insulin by cationic beta-cyclodextrin polymers from alginate/chitosan nanoparticles. Int J Pharm. 2010;393(1-2):212–218.
  • Liu L, Zhang Y, Yu S, et al. Dual stimuli-responsive nanoparticle-incorporated hydrogels as an oral insulin carrier for intestine-targeted delivery and enhanced paracellular permeation. ACS Biomater Sci Eng. 2018;4(8):2889–2902.
  • Diop M, Auberval N, Viciglio A, et al. Design, characterisation, and bioefficiency of insulin-chitosan nanoparticles after stabilisation by freeze-drying or cross-linking. Int J Pharm. 2015;491(1-2):402–408.
  • Li X, Guo S, Zhu C, et al. Intestinal mucosa permeability following oral insulin delivery using core shell corona nanolipoparticles. Biomaterials. 2013;34(37):9678–9687.
  • Chuang EY, Lin KJ, Su FY, et al. Noninvasive imaging oral absorption of insulin delivered by nanoparticles and its stimulated glucose utilization in controlling postprandial hyperglycemia during ogtt in diabetic rats. J Control Release. 2013;172(2):513–522.
  • Pan Y, Li YJ, Zhao HY, et al. Bioadhesive polysaccharide in protein delivery system: chitosan nanoparticles improve the intestinal absorption of insulin in vivo. Int J Pharm. 2002;249(1-2):139–147.
  • Chen S, Guo F, Deng T, et al. Eudragit s100-coated chitosan nanoparticles co-loading tat for enhanced oral colon absorption of insulin. AAPS PharmSciTech. 2017;18(4):1277–1287.
  • Barbari GR, Dorkoosh F, Amini M, et al. Synthesis and characterization of a novel peptide-grafted cs and evaluation of its nanoparticles for the oral delivery of insulin, in vitro, and in vivo study. Int J Nanomedicine. 2018;13:5127–5138.
  • Su FY, Lin KJ, Sonaje K, et al. Protease inhibition and absorption enhancement by functional nanoparticles for effective oral insulin delivery. Biomaterials. 2012;33(9):2801–2811.
  • Dhanasekaran S, Rameshthangam P, Venkatesan S, et al. In vitro and in silico studies of chitin and chitosan based nanocarriers for curcumin and insulin delivery. J Polym Environ. 2018;26(10):4095–4113.
  • Ji N, Hong Y, Gu Z, et al. Fabrication and characterization of complex nanoparticles based on carboxymethyl short chain amylose and chitosan by ionic gelation. Food Funct. 2018;9(5):2902–2912.
  • Mi FL, Wu YY, Lin YH, et al. Oral delivery of peptide drugs using nanoparticles self-assembled by poly(gamma-glutamic acid) and a chitosan derivative functionalized by trimethylation. Bioconjug Chem. 2008;19(6):1248–1255.
  • Sonaje K, Lin YH, Juang JH, et al. In vivo evaluation of safety and efficacy of self-assembled nanoparticles for oral insulin delivery. Biomaterials. 2009;30(12):2329–2339.
  • Alfatama M, Lim LY, Wong TW. Alginate-c18 conjugate nanoparticles loaded in tripolyphosphate-cross-linked chitosan-oleic acid conjugate-coated calcium alginate beads as oral insulin carrier. Mol Pharm. 2018;15(8):3369–3382.
  • Sarmento B, Ribeiro A, Veiga F, et al. Oral bioavailability of insulin contained in polysaccharide nanoparticles. Biomacromolecules. 2007;8(10):3054–3060.
  • Ibie CO, Knott RM, Thompson CJ. Complexation of novel thiomers and insulin to protect against in vitro enzymatic degradation - towards oral insulin delivery. Drug Dev Ind Pharm. 2019;45(1):67–75.
  • Jintapattanakit A, Junyaprasert VB, Kissel T. The role of mucoadhesion of trimethyl chitosan and pegylated trimethyl chitosan nanocomplexes in insulin uptake. J Pharm Sci. 2009;98(12):4818–4830.
  • Liu M, Wu L, Shan W, et al. Iron-mimic peptide converts transferrin from foe to friend for orally targeting insulin delivery. J Mater Chem B. 2018;6(4):593–601.
  • Liu M, Zhang J, Zhu X, et al. Efficient mucus permeation and tight junction opening by dissociable “mucus-inert” agent coated trimethyl chitosan nanoparticles for oral insulin delivery. J Control Release. 2016;222:67–77.
  • Mahjub R, Radmehr M, Dorkoosh FA, et al. Lyophilized insulin nanoparticles prepared from quaternized n-aryl derivatives of chitosan as a new strategy for oral delivery of insulin: in vitro, ex vivo and in vivo characterizations. Drug Dev Ind Pharm. 2014;40(12):1645–1659.
  • Liu C, Kou Y, Zhang X, et al. Enhanced oral insulin delivery via surface hydrophilic modification of chitosan copolymer based self-assembly polyelectrolyte nanocomplex. Int J Pharm. 2019;554:36–47.
  • Ma Z, Yeoh HH, Lim LY. Formulation pH modulates the interaction of insulin with chitosan nanoparticles. J Pharm Sci. 2002;91(6):1396–1404.
  • Bayat A, Dorkoosh FA, Dehpour AR, et al. Nanoparticles of quaternized chitosan derivatives as a carrier for colon delivery of insulin: Ex vivo and in vivo studies. Int J Pharm. 2008;356(1–2):259–266.
  • Mao S, Bakowsky U, Jintapattanakit A, et al. Self-assembled polyelectrolyte nanocomplexes between chitosan derivatives and insulin. J Pharm Sci. 2006;95(5):1035–1048.
  • Bai X, Kong M, Xia G, et al. Systematic investigation of fabrication conditions of nanocarrier based on carboxymethyl chitosan for sustained release of insulin. Int J Biol Macromol. 2017;102:468–474.
  • Zhu X, Shan W, Zhang P, et al. Penetratin derivative-based nanocomplexes for enhanced intestinal insulin delivery. Mol Pharm. 2014;11(1):317–328.
  • Shan W, Zhu X, Liu M, et al. Overcoming the diffusion barrier of mucus and absorption barrier of epithelium by self-assembled nanoparticles for oral delivery of insulin. Acs Nano. 2015;9(3):2345–2356.
  • Zhang P, Xu Y, Zhu X, et al. Goblet cell targeting nanoparticle containing drug-loaded micelle cores for oral delivery of insulin. Int J Pharm. 2015;496(2):993–1005.
  • Pedroso-Santana S, Fleitas-Salazar N. Ionotropic gelation method in the synthesis of nanoparticles/microparticles for biomedical purposes. Polym Int. 2020;69(5):443–447.
  • Chuang EY, Lin KJ, Su FY, et al. Calcium depletion-mediated protease inhibition and apical-junctional-complex disassembly via an EGTA-conjugated carrier for oral insulin delivery. J Control Release. 2013;169(3):296–305.
  • Tahtat D, Mahlous M, Benamer S, et al. Oral delivery of insulin from alginate/chitosan crosslinked by glutaraldehyde. Int J Biol Macromol. 2013;58:160–168.
  • Lin YH, Mi FL, Chen CT, et al. Preparation and characterization of nanoparticles shelled with chitosan for oral insulin delivery. Biomacromolecules. 2007;8(1):146–152.
  • Ma Z, Lim TM, Lim LY. Pharmacological activity of peroral chitosan-insulin nanoparticles in diabetic rats. Int J Pharm. 2005;293(1–2):271–280.
  • Pan Y, Zheng JM, Zhao HY, et al. Relationship between drug effects and particle size of insulin-loaded bioadhesive microspheres. Acta Pharmacol Sin. 2002;23(11):1051–1056.
  • Pereira de Sousa I, Moser T, Steiner C, et al. Insulin loaded mucus permeating nanoparticles: addressing the surface characteristics as feature to improve mucus permeation. Int J Pharm. 2016;500(1–2):236–244.
  • Zhang L, Qin H, Li J, et al. Preparation and characterization of layer-by-layer hypoglycemic nanoparticles with pH-sensitivity for oral insulin delivery. J Mater Chem B. 2018;6(45):7451–7461.
  • Fan YF, Wang YN, Fan YG, et al. Preparation of insulin nanoparticles and their encapsulation with biodegradable polyelectrolytes via the layer-by-layer adsorption. Int J Pharm. 2006;324(2):158–167.
  • Verma A, Sharma S, Gupta PK, et al. Vitamin b12 functionalized layer by layer calcium phosphate nanoparticles: a mucoadhesive and pH responsive carrier for improved oral delivery of insulin. Acta Biomater. 2016;31:288–300.
  • Bhumkar DR, Joshi HM, Sastry M, et al. Chitosan reduced gold nanoparticles as novel carriers for transmucosal delivery of insulin. Pharm Res. 2007;24(8):1415–1426.
  • Deng W, Xie Q, Wang H, et al. Selenium nanoparticles as versatile carriers for oral delivery of insulin: insight into the synergic antidiabetic effect and mechanism. Nanomedicine. 2017;13(6):1965–1974.
  • Cho HJ, Oh J, Choo MK, et al. Chondroitin sulfate-capped gold nanoparticles for the oral delivery of insulin. Int J Biol Macromol. 2014;63:15–20.
  • Hosnedlova B, Kepinska M, Skalickova S, et al. Nano-selenium and its nanomedicine applications: a critical review. Int J Nanomedicine. 2018;13:2107–2128.
  • Wong CY, Al-Salami H, Dass CR. Formulation and characterisation of insulin-loaded chitosan nanoparticles capable of inducing glucose uptake in skeletal muscle cells in vitro. J Drug Deliv Sci Technol. 2020;57:101738.
  • Wong CY, Al-Salami H, Dass CR. Lyophilisation improves bioactivity and stability of insulin-loaded polymeric-oligonucleotide nanoparticles for diabetes treatment. AAPS PharmSciTech. 2020;21(3):1–20.
  • Tiyaboonchai W, Woiszwillo J, Sims RC, et al. Insulin containing polyethylenimine-dextran sulfate nanoparticles. Int J Pharm. 2003;255(1-2):139–151.
  • Mahjub R, Dorkoosh FA, Amini M, et al. Preparation, statistical optimization, and in vitro characterization of insulin nanoparticles composed of quaternized aromatic derivatives of chitosan. AAPS PharmSciTech. 2011;12(4):1407–1419.
  • Mukhopadhyay P, Sarkar K, Chakraborty M, et al. Oral insulin delivery by self-assembled chitosan nanoparticles: in vitro and in vivo studies in diabetic animal model. Mater Sci Eng C Mater Biol Appl. 2013;33(1):376–382.
  • Makhlof A, Tozuka Y, Takeuchi H. Design and evaluation of novel ph-sensitive chitosan nanoparticles for oral insulin delivery. Eur J Pharm Sci. 2011;42(5):445–451.
  • Sarmento B, Martins S, Ribeiro A, et al. Development and comparison of different nanoparticulate polyelectrolyte complexes as insulin carriers. Int J Pept Res Ther. 2006;12(2):131–138.
  • Sarmento B, Ribeiro A, Veiga F, et al. Development and characterization of new insulin containing polysaccharide nanoparticles. Colloids Surf B Biointerfaces. 2006;53(2):193–202.
  • Elsayed A, Remawi MA, Qinna N, et al. Formulation and characterization of an oily-based system for oral delivery of insulin. Eur J Pharm Biopharm. 2009;73(2):269–279.
  • Prusty A, Sahu SK. Development and evaluation of insulin incorporated nanoparticles for oral administration. ISRN Nanotechnol. 2013;2013:1–6.
  • Nam JP, Choi C, Jang MK, et al. Insulin-incorporated chitosan nanoparticles based on polyelectrolyte complex formation. Macromol Res. 2010;18(7):630–635.
  • Salvioni L, Fiandra L, Del Curto MD, et al. Oral delivery of insulin via polyethylene imine-based nanoparticles for colonic release allows glycemic control in diabetic rats. Pharmacol Res. 2016;110:122–130.
  • Shamsa ES, Mahjub R, Mansoorpour M, et al. Nanoparticles prepared from n,n-dimethyl-n-octyl chitosan as the novel approach for oral delivery of insulin: preparation, statistical optimization and in-vitro characterization. Iran J Pharm Res. 2018;17(2):442–459.
  • Woitiski CB, Sarmento B, Carvalho RA, et al. Facilitated nanoscale delivery of insulin across intestinal membrane models. Int J Pharm. 2011;412(1–2):123–131.
  • Burova TV, Grinberg NV, Tur DR, et al. Ternary interpolyelectrolyte complexes insulin-poly(methylaminophosphazene)-dextran sulfate for oral delivery of insulin. Langmuir. 2013;29(7):2273–2281.
  • Andreani T, Miziara L, Lorenzon EN, et al. Effect of mucoadhesive polymers on the in vitro performance of insulin-loaded silica nanoparticles: interactions with mucin and biomembrane models. Eur J Pharm Biopharm. 2015;93:118–126.
  • Andreani T, de Souza AL, Kiill CP, et al. Preparation and characterization of peg-coated silica nanoparticles for oral insulin delivery. Int J Pharm. 2014;473(1–2):627–635.
  • Bharti C, Nagaich U, Pal AK, et al. Mesoporous silica nanoparticles in target drug delivery system: a review. Int J Pharm Investig. 2015;5(3):124–133.
  • Zhao X, Shan C, Zu Y, et al. Preparation, characterization, and evaluation in vivo of Ins-SiO₂-HP55 (insulin-loaded silica coating HP55) for oral delivery of insulin. Int J Pharm. 2013;454(1):278–284.
  • Guha A, Biswas N, Bhattacharjee K, et al. pH responsive cylindrical msn for oral delivery of insulin-design, fabrication and evaluation. Drug Deliv. 2016;23(9):3552–3561.
  • Wong CY, Martinez J, Zhao J, et al. Development of orally administered insulin-loaded polymeric-oligonucleotide nanoparticles: statistical optimization and physicochemical characterization. Drug Dev Ind Pharm. 2020;46(8):1238–1252.
  • Wong CY, Al-Salami H, Dass CR. C2C12 cell model: its role in understanding of insulin resistance at the molecular level and pharmaceutical development at the preclinical stage. J Pharm Pharmacol. 2020.DOI:10.1111/jphp.13359.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.