432
Views
8
CrossRef citations to date
0
Altmetric
Review Articles

Therapeutic advances in cardiac targeted drug delivery: from theory to practice

, ORCID Icon, , , , , ORCID Icon, , & show all
Pages 235-248 | Received 01 Jun 2020, Accepted 31 Aug 2020, Published online: 23 Sep 2020

References

  • Benjamin EJ, Muntner P, Alonso A, et al. Heart Disease and Stroke Statistics-2019 update: a report from the American Heart Association. Circulation. 2019;139(10):e526–e528.
  • Roth GA, Johnson CO, Abate KH, et al. The burden of cardiovascular diseases among US States, 1990-2016. JAMA Cardiol. 2018;3(5):375–389.
  • WHO. Global status report on noncommunicable diseases 2014. Geneva (Switzerland): World Health Organization; 2014.
  • Leong YY, Ng WH, Ellison-Hughes GM, et al. Cardiac stem cells for myocardial regeneration: they are not alone. Front Cardiovasc Med. 2017;4:47.
  • Saludas L, Pascual-Gil S, Roli F, et al. Heart tissue repair and cardioprotection using drug delivery systems. Maturitas. 2018;110:1–9.
  • Liu Z, Mikrani R, Zubair HM, et al. Systemic and local delivery of mesenchymal stem cells for heart renovation: challenges and innovations. Eur J Pharmacol. 2020;876:173049.
  • Segura-Ibarra V, Cara FE, Wu S, et al. Nanoparticles administered intrapericardially enhance payload myocardial distribution and retention. J Control Release. 2017;262:18–27.
  • Li SY, Sun R, Wang HX, et al. Combination therapy with epigenetic-targeted and chemotherapeutic drugs delivered by nanoparticles to enhance the chemotherapy response and overcome resistance by breast cancer stem cells. J Control Release. 2015;205:7–14.
  • Abri Aghdam M, Bagheri R, Mosafer J, et al. Recent advances on thermosensitive and pH-sensitive liposomes employed in controlled release. J Control Release. 2019;315:1–22.
  • Allijn IE, Czarny BMS, Wang X, et al. Liposome encapsulated berberine treatment attenuates cardiac dysfunction after myocardial infarction. J Control Release. 2017;247:127–133.
  • Ali DC, Naveed M, Gordon A, et al. β-Adrenergic receptor, an essential target in cardiovascular diseases. Heart Fail Rev. 2020;25(2):343–354.
  • Naveed M, Han L, Hasnat M, et al. Suppression of TGP on myocardial remodeling by regulating the NF-κB pathway. Biomed Pharmacother. 2018;108:1460–1468.
  • Amsterdam EA, Wenger NK, Brindis RG, et al. 2014 AHA/ACC guideline for the management of patients with non-ST-elevation acute coronary syndromes: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines. J Am Coll Cardiol. 2014;64(24):e139–e228.
  • Bax JJ, Achenbach S, Valgimigli M, et al. 2019 ESC guidelines for the diagnosis and management of chronic coronary syndromes. Eur Heart J. 2020;41(3):407–477.
  • Hoshyar N, Gray S, Han H, et al. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine. 2016;11(6):673–692.
  • Karimi M, Bahrami S, Ravari SB, et al. Albumin nanostructures as advanced drug delivery systems. Expert Opin Drug Deliv. 2016;13(11):1609–1623.
  • Miele E, Spinelli GP, Miele E, et al. Albumin-bound formulation of paclitaxel (Abraxane® ABI-007) in the treatment of breast cancer. Int J Nanomed. 2009;4 :99–105.
  • Zhong H, Chan G, Hu Y, et al. A comprehensive map of FDA-approved pharmaceutical products. Pharmaceutics. 2018;10(4):263.
  • Karimi M, Ghasemi A, Sahandi Zangabad P, et al. Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem Soc Rev. 2016;45(5):1457–1501.
  • Dariva CG, Coelho JFJ, Serra AC. Near infrared light-triggered nanoparticles using singlet oxygen photocleavage for drug delivery systems. J Control Release. 2019;294:337–354.
  • Hu Q, Chen Q, Gu Z. Advances in transformable drug delivery systems. Biomaterials. 2018;178:546–558.
  • Kumari P, Ghosh B, Biswas S. Nanocarriers for cancer-targeted drug delivery. J Drug Target. 2016;24(3):179–191.
  • Nakhlband A, Eskandani M, Saeedi N, et al. Marrubiin-loaded solid lipid nanoparticles’ impact on TNF-α treated umbilical vein endothelial cells: a study for cardioprotective effect. Colloids Surf B Biointerfaces. 2018;164:299–307.
  • Nguyen MM, Carlini AS, Chien MP, et al. Enzyme-responsive nanoparticles for targeted accumulation and prolonged retention in heart tissue after myocardial infarction. Adv Mater Weinheim. 2015;27(37):5547–5552.
  • Zhang J, Zu Y, Dhanasekara CS, et al. Detection and treatment of atherosclerosis using nanoparticles. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2017;9(1):e1412.
  • Dick SA, Epelman S. Chronic heart failure and inflammation: what do we really know? Circ Res. 2016;119(1):159–176.
  • Nakhlband A, Eskandani M, Omidi Y, et al. Combating atherosclerosis with targeted nanomedicines: recent advances and future prospective. Bioimpacts. 2018;8(1):59–75.
  • Karimi M, Sahandi Zangabad P, Baghaee-Ravari S, et al. Smart nanostructures for cargo delivery: uncaging and activating by light. J Am Chem Soc. 2017;139(13):4584–4610.
  • Hutin YJF, Hauri AM, Armstrong GL. Use of injections in healthcare settings worldwide, 2000: literature review and regional estimates. BMJ. 2003;327(7423):1075.
  • Hayashi T, Hutin YJ, Bulterys M, et al. Injection practices in 2011-2015: a review using data from the demographic and health surveys (DHS). BMC Health Serv Res. 2019;19(1):600.
  • Kraitchman DL, Tatsumi M, Gilson WD, et al. Dynamic imaging of allogeneic mesenchymal stem cells trafficking to myocardial infarction. Circulation. 2005;112(10):1451–1461.
  • Barbash IM, Chouraqui P, Baron J, et al. Systemic delivery of bone marrow-derived mesenchymal stem cells to the infarcted myocardium: feasibility, cell migration, and body distribution. Circulation. 2003;108(7):863–868.
  • Aicher A, Brenner W, Zuhayra M, et al. Assessment of the tissue distribution of transplanted human endothelial progenitor cells by radioactive labeling. Circulation. 2003;107(16):2134–2139.
  • Chin B, Nakamoto Y, Bulte J, et al. 111In oxine labelled mesenchymal stem cell SPECT after intravenous administration in myocardial infarction. Nucl Med Commun. 2003;24(11):1149–1154.
  • Ferreira MP, Ranjan S, Correia AM, et al. In vitro and in vivo assessment of heart-homing porous silicon nanoparticles. Biomaterials. 2016;94:93–104.
  • Anselmo AC, Mitragotri S. Cell-mediated delivery of nanoparticles: taking advantage of circulatory cells to target nanoparticles. J Control Release. 2014;190:531–541.
  • Chambers E, Mitragotri S. Prolonged circulation of large polymeric nanoparticles by non-covalent adsorption on erythrocytes. J Control Release. 2004;100(1):111–119.
  • Torrieri G, Fontana F, Figueiredo P, et al. Dual-peptide functionalized acetalated dextran-based nanoparticles for sequential targeting of macrophages during myocardial infarction. Nanoscale. 2020;12(4):2350–2358.
  • Chen S, Grayburn PA. Ultrasound-targeted microbubble destruction for cardiac gene delivery. cardiac gene therapy. Methods Mol Biol. 2017;1521:205–218.
  • Kim J, Cao L, Shvartsman D, et al. Targeted delivery of nanoparticles to ischemic muscle for imaging and therapeutic angiogenesis. Nano Lett. 2011;11(2):694–700.
  • Shabbir A, Zisa D, Leiker M, et al. Muscular dystrophy therapy by nonautologous mesenchymal stem cells: muscle regeneration without immunosuppression and inflammation. Transplantation. 2009;87(9):1275–1282.
  • Shabbir A, Zisa D, Suzuki G, et al. Heart failure therapy mediated by the trophic activities of bone marrow mesenchymal stem cells: a noninvasive therapeutic regimen. Am J Physiol Heart Circ Physiol. 2009;296(6):H1888–H1897.
  • Shabbir A, Zisa D, Lin H, et al. Activation of host tissue trophic factors through JAK-STAT3 signaling: a mechanism of mesenchymal stem cell-mediated cardiac repair. Am J Physiol Heart Circ Physiol. 2010;299(5):H1428–H1438.
  • Zisa D, Shabbir A, Mastri M, et al. Intramuscular VEGF repairs the failing heart: role of host-derived growth factors and mobilization of progenitor cells. Am J Physiol Regul Integr Comp Physiol. 2009;297(5):R1503–R1515.
  • Zisa D, Shabbir A, Mastri M, et al. Intramuscular VEGF activates an SDF1-dependent progenitor cell cascade and an SDF1-independent muscle paracrine cascade for cardiac repair. Am J Physiol Heart Circ Physiol. 2011;301(6):H2422–H2432.
  • Mao C, Hou X, Wang B, et al. Intramuscular injection of human umbilical cord-derived mesenchymal stem cells improves cardiac function in dilated cardiomyopathy rats. Stem Cell Res Ther. 2017;8(1):18.
  • Cimmino G, Giannarelli C, Chen W, et al. Adeno-associated virus serotype 8 ApoA-I gene transfer reduces progression of atherosclerosis in ApoE-KO mice: comparison of intramuscular and intravenous administration. Cardiovasc Pharmacol. 2011;57(3):325–333.
  • Ishikawa K. Intracoronary injection of large stem cells: size matters. Circ Cardiovasc Interventions. 2015;8(5):649–658.
  • Gastl M, Sürder D, Corti R, et al. Effect of intracoronary bone marrow-derived mononuclear cell injection early and late after myocardial infarction on CMR-derived myocardial strain. Int J Cardiol. 2020;310:108–115.
  • Haddad K, Potter B, Matteau A, et al. Long-term follow-up of the compare-ami trial: comparison of intracoronary injection of CD133+ bone marrow stem cells to placebo in patients after acute myocardial infarction with left ventricular dysfunction. Canadian J Cardiol. 2018;34(10):S141.
  • Eslam RB, Musmann R, Waxman AB, et al. Persistence and proliferation of human mesenchymal stromal cells in the right ventricular myocardium after intracoronary injection in a large animal model of pulmonary hypertension. Cytotherapy. 2017;19(6):668–679.
  • Guariento A, Blitzer D, Doulamis I, et al. Preischemic autologous mitochondrial transplantation by intracoronary injection for myocardial protection. J Thorac Cardiovasc Surg. 2020;160(2):e15–e29.
  • Lamirault G, Bock E, Sébille V, et al. Sustained quality of life improvement after intracoronary injection of autologous bone marrow cells in the setting of acute myocardial infarction: results from the BONAMI trial. Qual Life Res. 2017;26(1):121–125.
  • Balaban Y, Kaya A, Satilmisoglu MH, et al. Intracoronary focal nitroglycerin injection through drilled balloon is very effective in the resolution of coronary spasm versus into proximal coronary artery: a prospective randomized comparison study. Interventional Cardiol. 2018;31(6):765–774.
  • Park CB, Cho JM, Kim DH, et al. Intracoronary nitroglycerin injection through a microcatheter for coronary no-reflow following percutaneous coronary intervention. Int J Cardiol. 2016;214:400–402.
  • Abu Arab T, Rafik R, El Etriby A. Efficacy and safety of local intracoronary drug delivery in treatment of no-reflow phenomenon: a pilot study. J Interv Cardiol. 2016;29(5):496–504.
  • Sun Z, Zeng J, Huang H. Intracoronary injection of tirofiban prevents microcirculation dysfunction during delayed percutaneous coronary intervention in patients with acute myocardial infarction. Int J Cardiol. 2016;208:137–140.
  • De Luca G, Verdoia M, Suryapranata H. Benefits from intracoronary as compared to intravenous abciximab administration for STEMI patients undergoing primary angioplasty: a meta-analysis of 8 randomized trials. Atherosclerosis. 2012;222(2):426–433.
  • Nab MH, Mostafa S, Institute NH, et al. Comparison between intracoronary and intravenous eptifibatide bolus injection regimens during primary PCI in patients presenting with anterior STEMI. Cardiovasc Interventions. 2017;10(3):S8.
  • Rodriguez ER, Tan CD. Structure and anatomy of the human pericardium. Prog Cardiovasc Dis. 2017;59(4):327–340.
  • Ristic AD, Wagner HJ, Maksimovic R, et al. Epicardial halo phenomenon: a guide for pericardiocentesis? Heart Fail Rev. 2013;18(3):307–316.
  • Sinnaeve PR, Adriaenssens T. A contemporary look at pericardiocentesis. Trends Cardiovasc Med. 2019;29(7):375–383.
  • Maggiolini S, De Carlini CC, Imazio M. Evolution of the pericardiocentesis technique. J Cardiovasc Med. 2018;19(6):267–273.
  • Ayers GM, Rho TH, Ben-David J, et al. Amiodarone instilled into the canine pericardial sac migrates transmurally to produce electrophysiologic effects and suppress atrial fibrillation. Cardiovasc Electrophysiol. 1996;7(8):713–721.
  • Zhang J, Wu Z, Fan Z, et al. Pericardial application as a new route for implanting stem-cell cardiospheres to treat myocardial infarction. J Physiol. 2018;596(11):2037–2054.
  • Blazquez R, Sanchez-Margallo FM, Crisostomo V, et al. Intrapericardial delivery of cardiosphere-derived cells: an immunological study in a clinically relevant large animal model. PLoS One. 2016;11(2):e0149001.
  • Lamping KG, Rios CD, Chun JA, et al. Intrapericardial administration of adenovirus for gene transfer. 1997;272(1):H310–H317.
  • Wang W, Wang MQ, Wang H, et al. Effects of adenovirus-mediated hepatocyte growth factor gene therapy on postinfarct heart function: comparison of single and repeated injections. Hum Gene Ther. 2016;27(8):643–651.
  • Laakmann S, Fortmuller L, Piccini I, et al. Minimally invasive closed-chest ultrasound-guided substance delivery into the pericardial space in mice. Naunyn Schmiedebergs Arch Pharmacol. 2013;386(3):227–238.
  • Numico G, Cristofano A, Occelli M, et al. Prolonged drainage and intrapericardial bleomycin administration for cardiac tamponade secondary to cancer-related pericardial effusion. Medicine. 2016;95(15):e3273.
  • Ramer SA, Sapp JL. Percutaneous intrapericardial injection of triamcinolone in a patient with incessant pericarditis: a novel technique. Can J Cardiol. 2013;29(6):751.e1.
  • Hou D, Rogers PI, Toleikis PM, et al. Intrapericardial paclitaxel delivery inhibits neointimal proliferation and promotes arterial enlargement after porcine coronary overstretch. Circulation. 2000;102(13):1575–1581.
  • Laham RJ, Rezaee M, Post M, et al. Intrapericardial administration of basic fibroblast growth factor: myocardial and tissue distribution and comparison with intracoronary and intravenous administration. Catheter Cardiovasc Interv. 2003;58(3):375–381.
  • Kolettis TM, Kazakos N, Katsouras CS, et al. Intrapericardial drug delivery: pharmacologic properties and long-term safety in swine. Int J Cardiol. 2005;99(3):415–421.
  • Zhang M, Methot D, Poppa V, et al. Cardiomyocyte grafting for cardiac repair: graft cell death and anti-death strategies. J Mol Cell Cardiol. 2001;33(5):907–921.
  • Muller-Ehmsen J, Whittaker P, Kloner RA, et al. Survival and development of neonatal rat cardiomyocytes transplanted into adult myocardium. J Mol Cell Cardiol. 2002;34(2):107–116.
  • Burkhart HM, Qureshi MY, Rossano JW, et al. Autologous stem cell therapy for hypoplastic left heart syndrome: Safety and feasibility of intraoperative intramyocardial injections. J Thorac Cardiovasc Surg. 2019;158(6):1614–1623.
  • Richardson JD, Psaltis PJ, Frost L, et al. Incremental benefits of repeated mesenchymal stromal cell administration compared with solitary intervention after myocardial infarction. Cytotherapy. 2014;16(4):460–470.
  • Andrie RP, Beiert T, Knappe V. Treatment with mononuclear cell populations improves post-infarction cardiac function but does not reduce arrhythmia susceptibility. PLoS One. 2019;14(2):e0208301.
  • O’Quinn MP, Dormer KJ, Huizar JF, et al. Epicardial injection of nanoformulated calcium into cardiac ganglionic plexi suppresses autonomic nerve activity and postoperative atrial fibrillation. Heart Rhythm Society. 2019;16(4):597–605.
  • Grossman PM, Han Z, Palasis M, et al. Incomplete retention after direct myocardial injection. Cathet Cardiovasc Intervent. 2002;55(3):392–397.
  • Greenberg JW, Lancaster TS, Schuessler RB, et al. Postoperative atrial fibrillation following cardiac surgery: a persistent complication. Eur J Cardiothorac Surg. 2017;52(4):665–672.
  • Romanov A, Pokushalov E, Ponomarev D, et al. Long-term suppression of atrial fibrillation by botulinum toxin injection into epicardial fat pads in patients undergoing cardiac surgery: three-year follow-up of a randomized study. Heart Rhythm. 2019;16(2):172–177.
  • Mathieu E, Lamirault G, Toquet C, et al. Intramyocardial delivery of mesenchymal stem cell-seeded hydrogel preserves cardiac function and attenuates ventricular remodeling after myocardial infarction. PLoS One. 2012;7(12):e51991.
  • Johnson TD, Christman KL. Injectable hydrogel therapies and their delivery strategies for treating myocardial infarction. Expert Opin Drug Deliv. 2013;10(1):59–72.
  • Zeng X, Zou L, Levine RA, et al. Efficacy of polymer injection for ischemic mitral regurgitation: persistent reduction of mitral regurgitation and attenuation of left ventricular remodeling. JACC Cardiovasc Interv. 2015;8(2):355–363.
  • Teng CJ, Luo J, Chiu RC, et al. Massive mechanical loss of microspheres with direct intramyocardial injection in the beating heart: implications for cellular cardiomyoplasty. J Thorac Cardiovasc Surg. 2006;132(3):628–632.
  • Bonnet G, Ishikawa K, Hajjar RJ, et al. Direct myocardial injection of vectors. Methods Mol Biol. 2017;1521:237–248.
  • Chen J, Guo R, Zhou Q, et al. Injection of composite with bone marrow-derived mesenchymal stem cells and a novel synthetic hydrogel after myocardial infarction: a protective role in left ventricle function. Kaohsiung J Med Sci. 2014;30(4):173–180.
  • Mihic A, Cui Z, Wu J, et al. A conductive polymer hydrogel supports cell electrical signaling and improves cardiac function after implantation into myocardial infarct. Circulation. 2015;132(8):772–784.
  • Cui Z, Ni NC, Wu J, et al. Polypyrrole-chitosan conductive biomaterial synchronizes cardiomyocyte contraction and improves myocardial electrical impulse propagation. Theranostics. 2018;8(10):2752–2764.
  • Liao S-Y, Siu C-W, Liu Y, et al. Attenuation of left ventricular adverse remodeling with epicardial patching after myocardial infarction. J Cardiac Failure. 2010;16(7):590–598.
  • D’Amore A, Yoshizumi T, Luketich SK, et al. Bi-layered polyurethane - extracellular matrix cardiac patch improves ischemic ventricular wall remodeling in a rat model. Biomaterials. 2016;107:1–14.
  • Qazi TH, Rai R, Dippold D, et al. Development and characterization of novel electrically conductive PANI-PGS composites for cardiac tissue engineering applications. Acta Biomater. 2014;10(6):2434–2445.
  • Dergilev KV, Tsokolayeva ZI, Beloglazova IB, Ratner EI, et al. [Epicardial transplantation of cardiac progenitor cells based cells sheets is more promising method for stimulation of myocardial regeneration, than conventional cell injections]. Kardiologiia. 2019;59(5):53–60.
  • Park SJ, Kim RY, Park BW, et al. Dual stem cell therapy synergistically improves cardiac function and vascular regeneration following myocardial infarction. Nat Commun. 2019;10(1):3123.
  • Whyte W, Roche ET, Varela CE, et al. Sustained release of targeted cardiac therapy with a replenishable implanted epicardial reservoir. Nat Biomed Eng. 2018;2(6):416–428.
  • Tano N, Narita T, Kaneko M, et al. Epicardial placement of mesenchymal stromal cell-sheets for the treatment of ischemic cardiomyopathy; in vivo proof-of-concept study. Mol Ther. 2014;22(10):1864–1871.
  • Patila T, Miyagawa S, Imanishi Y, et al. Comparison of arrhythmogenicity and proinflammatory activity induced by intramyocardial or epicardial myoblast sheet delivery in a rat model of ischemic heart failure. PLoS One. 2015;10(4):e0123963.
  • Chaudhry PA, Mishima T, Sharov VG, et al. Passive epicardial containment prevents ventricular remodeling in heart failure. Soc Thoracic Surg. 2000;70(4):1275–1280.
  • Shiraishi Y, Yambe T, Sekine K, et al. Development of an artificial myocardium using a covalent shape-memory alloy fiber and its cardiovascular diagnostic response. Paper presented at Engineering in Medicine and Biology 27th Annual Conference; 2005 September 1–4; Shanghai, China.
  • Mau J, Menzie S, Huang Y, et al. Nonsurround, nonuniform, biventricular-capable direct cardiac compression provides Frank-Starling recruitment independent of left ventricular septal damage. J Thorac Cardiovasc Surg. 2011;142(1):209–215.
  • Zhou X. Active hydraulic ventricular attaching support system, US. Google Patents, WO2010127553A1. 2010. https://patents.google.com/patent/US20120059214.
  • Sembatya KR, Gang W, Muhammad N, et al. Cardioprotective effect of silicone built restraint device (ASD), for left ventricle remodeling in rat heart failure models. 2020.DOI:10.22541/au.158888126.60534417.
  • Naveed M, Wenhua L, Gang W, et al. A novel ventricular restraint device (ASD) repetitively deliver Salvia miltiorrhiza to epicardium have good curative effects in heart failure management. Biomed Pharmacother. 2017;95:701–710.
  • Yasmeen S, Liao X, Khan FU, et al. A novel approach to devise the therapy for ventricular fibrillation by epicardial delivery of lidocaine using active hydraulic ventricular attaching support system: an experimental study in rats. J Biomed Mater Res. 2019;107(5):1722–1731.
  • Li X, Mikrani R, Li C, et al. An epicardial delivery of nitroglycerine by active hydraulic ventricular support drug delivery system improves cardiac function in a rat model. Drug Deliv Transl Res. 2020;10(1):23–33.
  • Yue S, Naveed M, Gang W, et al. Cardiac support device (ASD) delivers bone marrow stem cells repetitively to epicardium has promising curative effects in advanced heart failure. Biomed Microdevices. 2018;20(2):40.
  • Liu Z, Naveed M, Baig MMFA, et al. Therapeutic approach for global myocardial injury using bone marrow-derived mesenchymal stem cells by cardiac support device in rats. 2020.DOI:10.20944/preprints202004.0227.v3.
  • Mikrani R, Li C, Naveed M, et al. Pharmacokinetic Advantage of ASD Device Promote Drug Absorption through the Epicardium. Pharm Res. 2020;37(9):173.
  • Naveed M, Mohammad IS, Xue L, et al. The promising future of ventricular restraint therapy for the management of end-stage heart failure. Biomed Pharmacother. 2018;99:25–32.
  • Mawad D, Mansfield C, Lauto A, et al. A conducting polymer with enhanced electronic stability applied in cardiac models. Sci Adv. 2016;2(11):e1601007.
  • Liang S, Zhang Y, Wang H, et al. Paintable and Rapidly Bondable Conductive Hydrogels as Therapeutic Cardiac Patches. Adv Mater Weinheim. 2018;30(23):e1704235.
  • Wu T, Cui C, Huang Y, et al. Coadministration of an Adhesive Conductive Hydrogel Patch and an Injectable Hydrogel to Treat Myocardial Infarction. ACS Appl Mater Interfaces. 2020;12(2):2039–2048.
  • Lin X, Liu Y, Bai A, et al. A viscoelastic adhesive epicardial patch for treating myocardial infarction. Nat Biomed Eng. 2019;3(8):632–643.
  • Ichihara Y, Kaneko M, Yamahara K, et al. Self-assembling peptide hydrogel enables instant epicardial coating of the heart with mesenchymal stromal cells for the treatment of heart failure. Biomaterials. 2018;154:12–23.
  • Walker BW, Lara RP, Yu CH, et al. Engineering a naturally-derived adhesive and conductive cardiopatch. Biomaterials. 2019;207:89–101.
  • Ungerleider JL, Kammeyer JK, Braden RL, et al. Enzyme-targeted nanoparticles for delivery to ischemic skeletal muscle. Polym Chem. 2017;8(34):5212–5219.
  • Won YW, McGinn AN, Lee M, et al. Targeted gene delivery to ischemic myocardium by homing peptide-guided polymeric carrier. Mol Pharm. 2013;10(1):378–385.
  • Rodger MA, King L. Drawing up and administering intramuscular injections: a review of the literature. J Adv Nursing. 2000;31:574–582.
  • Chapman MP, Lopez Gonzalez JL, Goyette BE, et al. Application of the HeartLander crawling robot for injection of a thermally sensitive anti-remodeling agent for myocardial infarction therapy. Conf Proc IEEE Eng Med Biol Soc. 2010;2010:5428–5431.
  • Wang F, Wang X, Gao L, et al. Nanoparticle-mediated delivery of siRNA into zebrafish heart: a cell-level investigation on the biodistribution and gene silencing effects. Nanoscale. 2019;11(39):18052–18064.
  • Nguyen MA, Wyatt H, Susser L, et al. Delivery of microRNAs by chitosan nanoparticles to functionally alter macrophage cholesterol efflux in vitro and in vivo. ACS Nano. 2019;13(6):6491–6505.
  • Bejerano T, Etzion S, Elyagon S, et al. Nanoparticle delivery of miRNA-21 mimic to cardiac macrophages improves myocardial remodeling after myocardial infarction. Nano Lett. 2018;18(9):5885–5891.
  • Pechanova O, Barta A, Koneracka M, et al. Protective effects of nanoparticle-loaded aliskiren on cardiovascular system in spontaneously hypertensive rats. Molecules. 2019;24(15):2710.
  • Li W, Gong K, Ding Y, et al. Effects of triptolide and methotrexate nanosuspensions on left ventricular remodeling in autoimmune myocarditis rats. Int J Nanomedicine. 2019;14:851–863.
  • Wang W, Liu H, Lu Y, et al. Controlled-releasing hydrogen sulfide donor based on dual-modal iron oxide nanoparticles protects myocardial tissue from ischemia-reperfusion injury. Int J Nanomedicine. 2019;14:875–888.
  • Stone GW, Midei M, Newman W, et al. Randomized comparison of everolimus-eluting and paclitaxel-eluting stents: two-year clinical follow-up from the clinical evaluation of the Xience V everolimus eluting coronary stent system in the treatment of patients with de novo native coronary artery lesions (SPIRIT) III trial. Circulation. 2009;119(5):680–686.
  • Moses JW, Nikolsky E, Mehran R, et al. Safety and efficacy of the 2.25-mm sirolimus-eluting Bx Velocity stent in the treatment of patients with de novo native coronary artery lesions: the SIRIUS 2.25 trial. Am J Cardiol. 2006;98(11):1455–1460.
  • Kereiakes DJ, Cannon LA, Feldman RL, et al. Clinical and angiographic outcomes after treatment of de novo coronary stenoses with a novel platinum chromium thin-strut stent: primary results of the PERSEUS (prospective evaluation in a randomized trial of the safety and efficacy of the use of the TAXUS element paclitaxel-eluting coronary stent system) trial. J Am Coll Cardiol. 2010;56(4):264–271.
  • Kereiakes DJ, Windecker S, Jobe RL, et al. Clinical Outcomes following implantation of thin-strut, bioabsorbable polymer-coated, everolimus-eluting SYNERGY stents. Circ Cardiovasc Interv. 2019;12(9):e008152.
  • Shiozaki AA, Senra T, Morikawa AT, et al. Treatment of patients with aortic atherosclerotic disease with paclitaxel-associated lipid nanoparticles. Clinics. 2016;71(8):435–439.
  • Traverse JH, Henry TD, Pepine CJ, et al. Effect of the use and timing of bone marrow mononuclear cell delivery on left ventricular function after acute myocardial infarction: the TIME randomized trial. JAMA. 2012;308(22):2380–2389.
  • Kharlamov AN, Feinstein JA, Cramer JA, et al. Plasmonic photothermal therapy of atherosclerosis with nanoparticles: long-term outcomes and safety in NANOM-FIM trial. Future Cardiol. 2017;13(4):345–363.
  • Zsebo K, Yaroshinsky A, Rudy JJ, et al. Long-term effects of AAV1/SERCA2a gene transfer in patients with severe heart failure: analysis of recurrent cardiovascular events and mortality. Circ Res. 2014;114(1):101–108.
  • Greenberg B, Butler J, Felker GM, et al. Calcium upregulation by percutaneous administration of gene therapy in patients with cardiac disease (CUPID 2): a randomised, multinational, double-blind, placebo-controlled, phase 2b trial. The Lancet. 2016;387(10024):1178–1186.
  • Maruyama R, Yokoyama H, Seto T, et al. Catheter drainage followed by the instillation of bleomycin to manage malignant pericardial effusion in non-small cell lung cancer: a multi-institutional phase II trial. J Thorac Oncol. 2007;2(1):65–68.
  • Kunitoh H, Tamura T, Shibata T, et al. A randomised trial of intrapericardial bleomycin for malignant pericardial effusion with lung cancer (JCOG9811). Br J Cancer. 2009;100(3):464–469.
  • Yau TM, Pagani FD, Mancini DM, Chang HL, et al. Intramyocardial injection of mesenchymal precursor cells and successful temporary weaning from left ventricular assist device support in patients with advanced heart failure: a randomized clinical trial. JAMA. 2019;321(12):1176–1186.
  • Ascheim DD, Gelijns AC, Goldstein D, et al. Mesenchymal precursor cells as adjunctive therapy in recipients of contemporary left ventricular assist devices. Circulation. 2014;129(22):2287–2296.
  • Povsic TJ, Henry TD, Traverse JH, et al. The RENEW trial: efficacy and safety of intramyocardial autologous CD34(+) cell administration in patients with refractory angina. JACC Cardiovasc Interv. 2016;9(15):1576–1585.
  • Heldman AW, DiFede DL, Fishman JE, et al. Transendocardial mesenchymal stem cells and mononuclear bone marrow cells for ischemic cardiomyopathy: the TAC-HFT randomized trial. JAMA. 2014;311(1):62–73.
  • Mathiasen AB, Qayyum AA, Jorgensen E, et al. Bone marrow-derived mesenchymal stromal cell treatment in patients with severe ischaemic heart failure: a randomized placebo-controlled trial (MSC-HF trial). Eur Heart J. 2015;36(27):1744–1753.
  • Bartunek J, Davison B, Sherman W, et al. Congestive heart failure cardiopoietic regenerative therapy (CHART-1) trial design. Eur J Heart Fail. 2016;18(2):160–168.
  • Hare JM, DiFede DL, Rieger AC, et al. Randomized comparison of allogeneic versus autologous mesenchymal stem cells for nonischemic dilated cardiomyopathy: POSEIDON-DCM trial. J Am Coll Cardiol. 2017;69(5):526–537.
  • Rogers JG, Pagani FD, Tatooles AJ, et al. Intrapericardial left ventricular assist device for advanced heart failure. N Engl J Med. 2017;376(5):451–460.
  • Park SJ, Milano CA, Tatooles AJ, et al. Outcomes in advanced heart failure patients with left ventricular assist devices for destination therapy. Circ Heart Fail. 2012;5(2):241–248.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.