392
Views
13
CrossRef citations to date
0
Altmetric
Review Articles

Biomedical application of chondroitin sulfate with nanoparticles in drug delivery systems: systematic review

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 259-268 | Received 05 Jul 2020, Accepted 02 Oct 2020, Published online: 14 Oct 2020

References

  • Bruschi ML. Strategies to modify the drug release from pharmaceutical systems. Cambridge (UK): Woodhead Publishing; 2015.
  • Tiwari G, Tiwari R, Sriwastawa B, et al. Drug delivery systems: an updated review. Int J Pharm Investig. 2012;2:2–11.
  • Park JH, Cho HJ, Yoon HY, et al. Hyaluronic acid derivative-coated nanohybrid liposomes for cancer imaging and drug delivery. J Control Release. 2014;174:98–108.
  • Termsarasab U, Yoon IS, Park JH, et al. Polyethylene glycol-modified arachidyl chitosan-based nanoparticles for prolonged blood circulation of doxorubicin. Int J Pharm. 2014;464:127–134.
  • Biswas AK, Islam MR, Choudhury ZS, et al. Nanotechnology based approaches in cancer therapeutics. Adv Nat Sci Nanosci Nanotechnol. 2014;5:1–11.
  • Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces. 2010;75:1–18.
  • Wilczewska AZ, Niemirowicz K, Markiewicz KH, et al. Nanoparticles as drug delivery systems. Pharmacol Rep. 2012;64:1020–1037.
  • Bala I, Hariharan S, Kumar M. PLGA nanoparticles in drug delivery: the state of the art. Crit Rev Ther Drug Carrier Syst. 2004;21:387–422.
  • Vauthier C, Dubernet C, Fattal E, et al. Poly(alkylcyanoacrylates) as biodegradable materials for biomedical applications. Adv Drug Deliv Rev. 2003;55:519–548.
  • Gong J, Chen M, Zheng Y, et al. Polymeric micelles drug delivery system in oncology. J Control Release. 2012;159:312–323.
  • Jhaveri A, Deshpande P, Torchilin V. Stimuli-sensitive nanopreparations for combination cancer therapy. J Control Release. 2014;190:352–370.
  • Schroeder A, Heller DA, Winslow MM, et al. Treating metastatic cancer with nanotechnology. Nat Rev Cancer. 2012;12:39–50.
  • Zhang J, Saltzman M. Engineering biodegradable nanoparticles for drug and gene delivery. Chem Eng Prog. 2013;109:25–30.
  • Han J, Guo X, Lei Y, et al. Synthesis and characterization of selenium-chondroitin sulfate nanoparticles. Carbohydr Polym. 2012;90:122–126.
  • Mucci A, Schenetti L, Volpi N. 1H and 13C nuclear magnetic resonance identification and characterization of components of chondroitin sulfates of various origin. Carbohydr Polym. 2000;41:37–45.
  • Gandhi NS, Mancera RL. The structure of glycosaminoglycans and their interactions with proteins. Chem Biol Drug Des. 2008;72:455–482.
  • Yu C, Gao C, Lü S, et al. Facile preparation of pH-sensitive micelles self-assembled from amphiphilic chondroitin sulfate-histamine conjugate for triggered intracellular drug release. Colloids Surf B Biointerfaces. 2014;115:331–339.
  • Pathak A, Kumar P, Chuttani K, et al. Gene expression, biodistribution, and pharmacoscintigraphic evaluation of chondroitin sulfate-PEI nanoconstructs mediated tumor gene therapy. ACS Nano. 2009;3:1493–1505.
  • Cho HJ, Oh J, Choo MK, et al. Chondroitin sulfate-capped gold nanoparticles for the oral delivery of insulin. Int J Biol Macromol. 2014;63:15–20.
  • Kumar S, Ali J, Baboota S. Polysaccharide nanoconjugates for drug solubilization and targeted delivery. In: Maiti S, Jana S, editors. Polysaccharide carriers for drug delivery. Duxford (UK): Elsevier; 2019. p. 443–475.
  • Wang J, Zhao W, Chen H, et al. Anti-tumor study of chondroitin sulfate-methotrexate nanogels. Nanoscale Res Lett. 2017;12:572–580.
  • Carino GP, Mathiowitz E. Oral insulin delivery. Adv Drug Deliv Rev. 1999;35:249–257.
  • Li F, Na K. Self-assembled chlorin e6 conjugated chondroitin sulfate nanodrug for photodynamic therapy. Biomacromolecules. 2011;12:1724–1730.
  • Liu YS, Chiu CC, Chen HY, et al. Preparation of chondroitin sulfate-g-poly(ε-caprolactone) copolymers as a CD44-targeted vehicle for enhanced intracellular uptake. Mol Pharm. 2014;11:1164–1175.
  • Xi J, Zhou L, Fei Y. Preparation of chondroitin sulfate nanocapsules for use as carries by the interfacial polymerization method. Int J Biol Macromol. 2012;50:157–163.
  • Cheng KM, Hung YW, Chen CC, et al. Green synthesis of chondroitin sulfate-capped silver nanoparticles: characterization and surface modification. Carbohydr Polym. 2014;110:195–202.
  • Rooney A. Extending a risk-of-bias approach to address in vitro studies. National Toxicology Program Office of Health Assessment and Translation; 2015.
  • Varghese OP, Liu J, Sundaram K, et al. Chondroitin sulfate derived theranostic nanoparticles for targeted drug delivery. Biomater Sci. 2016;4:1310–1313.
  • Hu CS, Tang SL, Chiang CH, et al. Characterization and anti-tumor effects of chondroitin sulfate–chitosan nanoparticles delivery system. J Nanopart Res. 2014;16:2672–2687.
  • Huang SJ, Sun SL, Feng TH, et al. Folate-mediated chondroitin sulfate-Pluronic 127 nanogels as a drug carrier. Eur J Pharm Sci. 2009;38:64–73.
  • Abdullah TA, Ibrahim NJ, Warsi MH. Chondroitin sulfate-chitosan nanoparticles for ocular delivery of bromfenac sodium: Improved permeation, retention, and penetration. Int J Pharma Investig. 2016;6:96–105.
  • Ribeiro TG, Chávez-Fumagalli MA, Valadares DG, et al. Novel targeting using nanoparticles: an approach to the development of an effective anti-leishmanial drug-delivery system. Int J Nanomedicine. 2014;9:877–890.
  • Lee JY, Park JH, Lee JJ, et al. Polyethylene glycol-conjugated chondroitin sulfate A derivative nanoparticles for tumor-targeted delivery of anticancer drugs. Carbohydr Polym. 2016;151:68–77.
  • Kiruthika V, Maya S, Suresh MK, et al. Comparative efficacy of chloramphenicol loaded chondroitin sulfate and dextran sulfate nanoparticles to treat intracellular Salmonella infections. Colloids Surf B Biointerfaces. 2015;127:33–40.
  • Lin YJ, Liu YS, Yeh HH, et al. Self-assembled poly(ε-caprolactone)-g-chondroitin sulfate copolymers as an intracellular doxorubicin delivery carrier against lung cancer cells. Int J Nanomedicine. 2012;7:4169–4183.
  • Liu M, Du H, Zhai G. Self-assembled nanoparticles based on chondroitin sulfate-deoxycholic acid conjugates for docetaxel delivery: Effect of degree of substitution of deoxycholic acid. Colloids Surf B Biointerfaces. 2016;146:235–244.
  • Lee JY, Chung SJ, Cho HJ, et al. Bile acid-conjugated chondroitin sulfate A-based nanoparticles for tumor-targeted anticancer drug delivery. Eur J Pharm Biopharm. 2015;94:532–541.
  • Wang XF, Ren J, He HQ, et al. Self-assembled nanoparticles of reduction-sensitive poly (lactic-co-glycolic acid)-conjugated chondroitin sulfate A for doxorubicin delivery: preparation, characterization and evaluation. Pharm Dev Technol. 2019;24:794–802.
  • Lee JY, Chung SJ, Cho HJ, et al. Phenylboronic acid‐decorated chondroitin sulfate A‐based theranostic nanoparticles for enhanced tumor targeting and penetration. Adv Funct Mater. 2015;25:3705–3717.
  • Cellet TSP, Pereira GM, Muniz EC, et al. Hydroxyapatite nanowhiskers embedded in chondroitin sulfate microspheres as colon targeted drug delivery systems. J Mater Chem B. 2015;3:6837–6846.
  • Zhang B, Cheng G, Zheng M, et al. Targeted delivery of doxorubicin by CSA-binding nanoparticles for choriocarcinoma treatment. Drug Deliv. 2018;25:461–471.
  • Xi J, Qin J, Fan L. Chondroitin sulfate functionalized mesostructured silica nanoparticles as biocompatible carriers for drug delivery. Int J Nanomedicine. 2012;7:5235–5247.
  • Radhakrishnan K, Tripathy J, Datey A, et al. Mesoporous silica–chondroitin sulphate hybrid nanoparticles for targeted and bio-responsive drug delivery. New J Chem. 2015;39:1754–1760.
  • Mallick N, Anwar M, Asfer M, et al. Chondroitin sulfate-capped super-paramagnetic iron oxide nanoparticles as potential carriers of doxorubicin hydrochloride. Carbohydr Polym. 2016;151:546–556.
  • Varshosaz J, Sadeghi Aliabadi H, Asheghali F. Chondroitin/doxorubicin nanoparticulate polyelectrolyte complex for targeted delivery to HepG2 cells. IET Nanobiotechnology. 2017;11:164–172.
  • Zu M, Ma L, Zhang X, et al. Chondroitin sulfate-functionalized polymeric nanoparticles for colon cancer-targeted chemotherapy. J Colloids Surf B Biointerfaces. 2019;177:399–406.
  • Panyam J, Dali MM, Sahoo SK, et al. Polymer degradation and in vitro release of a model protein from poly (D, L-lactide-co-glycolide) nano-and microparticles. J Control Release. 2003;92:173–187.
  • Lim JJ, Hammoudi TM, Bratt-Leal AM, et al. Development of nano- and microscale chondroitin sulfate particles for controlled growth factor delivery. Acta Biomater. 2011;7:986–995.
  • Kohane DS. Microparticles and nanoparticles for drug delivery. Biotechnol Bioeng. 2007;96:203–209.
  • Carpenedo RL, Bratt-Leal AM, Marklein RA, et al. Homogeneous and organized differentiation within embryoid bodies induced by microsphere-mediated delivery of small molecules. Biomaterials. 2009;30:2507–2515.
  • Rizvi SA, Saleh AM. Applications of nanoparticle systems in drug delivery technology. Saudi Pharm J. 2018;26:64–70.
  • Shnoudeh AJ, Hamad I, Abdo RW, et al. Synthesis, characterization, and applications of metal nanoparticles. In: Tekade RK, editor. Biomaterials and bionanotechnology. London (UK): Elsevier; 2019. p. 527–612.
  • Honary S, Zahir F. Effect of zeta potential on the properties of nano-drug delivery systems-a review (Part 2). Trop J Pharm Res. 2013;12:265–273.
  • Honary S, Zahir F. Effect of zeta potential on the properties of nano-drug delivery systems-a review (Part 1). Trop J Pharm Res. 2013;12:255–264.
  • Lu GW, Gao P. Emulsions and microemulsions for topical and transdermal drug delivery. In: Kulkarni VS, editor. Handbook of non-invasive drug delivery systems. Oxford (UK): Elsevier; 2010. p. 59–94.
  • Dey S, Pramanik S, Malgope A. Formulation and optimization of sustained release stavudine microspheres using response surface methodology. Int Sch Res Notices. 2011;2011:1–7.
  • Pang X, Lu Z, Du H, et al. Hyaluronic acid-quercetin conjugate micelles: synthesis, characterization, in vitro and in vivo evaluation. Colloids Surf B Biointerfaces. 2014;123:778–786.
  • Cheng R, Meng F, Deng C, et al. Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery. Biomaterials. 2013;34:3647–3657.
  • Deng C, Jiang Y, Cheng R, et al. Biodegradable polymeric micelles for targeted and controlled anticancer drug delivery: promises, progress and prospects. Nano Today. 2012;7:467–480.
  • Singh R, Lillard JW Jr. Nanoparticle-based targeted drug delivery. Exp Mol Pathol. 2009;86:215–223.
  • Liang Y, Huang W, Zeng D, et al. Cancer-targeted design of bioresponsive prodrug with enhanced cellular uptake to achieve precise cancer therapy. Drug Deliv. 2018;25:1350–1361.
  • Riss TL, Moravec RA. Use of multiple assay endpoints to investigate the effects of incubation time, dose of toxin, and plating density in cell-based cytotoxicity assays. Assay Drug Dev Technol. 2004;2:51–62.
  • Li W, Zhou J, Xu Y. Study of the in vitro cytotoxicity testing of medical devices. Biomed Rep. 2015;3:617–620.
  • Kunzmann A, Andersson B, Thurnherr T, et al. Toxicology of engineered nanomaterials: focus on biocompatibility, biodistribution and biodegradation. Biochim Biophys Acta. 2011;1810:361–373.
  • Soenen SJ, Manshian B, Montenegro JM, et al. Cytotoxic effects of gold nanoparticles: a multiparametric study. ACS Nano. 2012;6:5767–5783.
  • Riss TL, Richard AM, Andrew LN. Cytotoxicity testing: measuring viable cells, dead cells, and detecting mechanism of cell death. In: Stoddart MJ, editor. Mammalian cell viability. Totowa (NJ): Humana Press; 2011. p. 103–114.
  • Meade E. Avoiding accidental exposure to intravenous cytotoxic drugs. Br J Nurs. 2014;23:S34–S39.
  • Marks DC, Belov L, Davey MW, et al. The MTT cell viability assay for cytotoxicity testing in multidrug-resistant human leukemic cells. Leuk Res. 1992;16:1165–1173.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.