463
Views
5
CrossRef citations to date
0
Altmetric
Review Articles

Neglected tropical diseases and infectious illnesses: potential targeted peptides employed as hits compounds in drug design

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 269-283 | Received 03 Jul 2020, Accepted 13 Oct 2020, Published online: 27 Oct 2020

References

  • World Health Organization (WHO). Neglected tropical diseases [cited 2019 Aug 22]. Available from: https://www.who.int/neglected_diseases/diseases/en/.
  • Cook PP. What is new in infectious diseases? N C Med J. 2016;77(5):320–323.
  • Engels D, Zhou XN. Neglected tropical diseases: an effective global response to local poverty-related disease priorities. Infect Dis Poverty. 2020;9(1):10.
  • Ferreira LG, Andricopulo AD. Drug repositioning approaches to parasitic diseases: a medicinal chemistry perspective. Drug Discov Today. 2016;21(10):1699–1710.
  • Ferreira LLG, Andricopulo AD. Drugs and vaccines in the 21st century for neglected diseases. Lancet Infect Dis. 2019;19(2):125–127.
  • Ortu G, Williams O. Neglected tropical diseases: exploring long term practical approaches to achieve sustainable disease elimination and beyond. Infect Dis Poverty. 2017;6(1):147.
  • Bruno BJ, Miller GD, Lim CS. Basics and recent advances in peptide and protein drug delivery. Ther Deliv. 2013;4(11):1443–1467.
  • Craik DJ, Fairlie DP, Liras S, et al. The future of peptide-based drugs. Chem. Biol. Drug Des. 2013;81(1):136–147.
  • Aungst B, Saitoh H, Burcham D, et al. Enhancement of the intestinal absorption of peptides and nonpeptides. J Control Release. 1996;41(1–2):19–31.
  • Torchilin V. Intracellular delivery of protein and peptide therapeutics. Drug Discov Today Technol. 2009;5(2–3):95–103.
  • Boohaker RJ, Lee MW, Vishnubhotla P, et al. The use of therapeutic peptides to target and to kill cancer cells. Curr Med Chem. 2012;19(22):3794–3804.
  • Gilad Y, Firer M, Gellerman G. Recent innovations in peptide based targeted drug delivery to cancer cells. Biomedicines. 2016;4(2):11.
  • Pérez-Picaso L, Olivo HF, Argotte-Ramos R, et al. Linear and cyclic dipeptides with antimalarial activity. Bioorganic Med Chem Lett. 2012;22(23):7048–7051.
  • Recio C, Maione F, Iqba AJ, et al. The potential therapeutic application of peptides and peptidomimetics in cardiovascular disease. Front. Pharmacol. 2017;7:1–11.
  • Araste F, Abnous K, Hashemi M, et al. Peptide-based targeted therapeutics: focus on cancer treatment. J Control Release. 2018;292:141–162.
  • Hayashi MAF, Ducancel F, Konno K. Natural peptides with potential applications in drug development, diagnosis, and/or biotechnology. Int J Pept. 2012;2012:1–2.
  • Rastogi S, Shukla S, Kalaivani M, et al. Peptide-based therapeutics: quality specifications, regulatory considerations, and prospects. Drug Discov Today. 2019;24(1):148–162.
  • Rafferty J, Nagaraj H, McCloskey AP, et al. Peptide therapeutics and the pharmaceutical industry: barriers encountered translating from the laboratory to patients. Curr Med Chem. 2016;23(37):4231–4259.
  • Clinical Trials.gov. ; 2020 [cited 2020 June 1]. Available from: https://clinicaltrials.gov/
  • Fosgerau K, Hoffmann T. Peptide therapeutics: current status and future directions. Drug Discov Today. 2015;20(1):122–128.
  • Kaspar AA, Reichert JM. Future directions for peptide therapeutics development. Drug Discov Today. 2013;18(17–18):807–817.
  • Pant S, Singh M, Ravichandiran V, et al. Peptide-like and small-molecule inhibitors against Covid-19. J Biomol Struct Dyn. 2020;6:1–10.
  • Alhoot MA, Rathinam AK, Wang SM, et al. Inhibition of dengue virus entry into target cells using synthetic antiviral peptides. Int J Med Sci. 2013;10(6):719–729.
  • Panya A, Bangphoomi K, Choowongkomon K, et al. Peptide inhibitors against dengue virus infection. Chem Biol Drug Des. 2014;84(2):148–157.
  • Nitsche C, Behnam MA, Steuer C, et al. Retro peptide-hybrids as selective inhibitors of the Dengue virus NS2B-NS3 protease. Antiviral Res. 2012;94(1):72–79.
  • Giroud M, Kuhn B, Saint-Auret S, et al. 2 H-1,2,3-triazole-based dipeptidyl nitriles: potent, selective, and trypanocidal rhodesain inhibitors by structure-based design. J Med Chem. 2018;61(8):3370–3388.
  • Royo S, Rodríguez S, Schirmeister T, et al. Dipeptidyl enoates as potent rhodesain inhibitors that display a dual mode of action. ChemMedChem. 2015;10(9):1484–1487.
  • Latorre A, Schirmeister T, Kesselring J, et al. Dipeptidyl nitroalkenes as potent reversible inhibitors of cysteine proteases rhodesain and cruzain. ACS Med Chem Lett. 2016;7(12):1073–1076.
  • Joyeau R, Maoulida C, Guillet C, et al. Synthesis and activity of pyrrolidinyl- and thiazolidinyl-dipeptide derivatives as inhibitors of the Tc80 prolyl oligopeptidase from Trypanosoma cruzi. Eur J Med Chem. 2000;35(2):257–266.
  • Konno K, Rangel M, Oliveira JS, et al. Decoralin, a novel linear cationic alpha-helical peptide from the venom of the solitary eumenine wasp Oreumenes decoratus. Peptides. 2007;28(12):2320–2327.
  • Rangel M, Cabrera MP, Kazuma K, et al. Chemical and biological characterization of four new linear cationic α-helical peptides from the venoms of two solitary eumenine wasps. Toxicon. 2011;57(7–8):1081–1092.
  • Kückelhaus SA, Leite JR, Muniz-Junqueira MI, et al. Antiplasmodial and antileishmanial activities of phylloseptin-1, an antimicrobial peptide from the skin secretion of Phyllomedusa azurea (Amphibia). Exp Parasitol. 2009;123(1):11–16.
  • Mangoni ML, Papo N, Saugar JM, et al. Effect of natural L- to D-amino acid conversion on the organization, membrane binding, and biological function of the antimicrobial peptides bombinins H. Biochemistry. 2006;45(13):4266–4276.
  • Mangoni ML, Saugar JM, Dellisanti M, et al. Temporins, small antimicrobial peptides with leishmanicidal activity. J Biol Chem. 2005;280(2):984–990.
  • Alente C, Guedes RC, Moreira R, et al. Dipeptide vinyl sultams: synthesis via the Wittig-Horner reaction and activity against papain, falcipain-2 and Plasmodium falciparum. Bioorg Med Chem Lett. 2006;16(15):4115–4119.
  • Capela R, Oliveira R, Gonçalves LM, et al. Artemisinin-dipeptidyl vinyl sulfone hybrid molecules: design, synthesis and preliminary SAR for antiplasmodial activity and falcipain-2 inhibition. Bioorg Med Chem Lett. 2009;19(12):3229–3232.
  • Mallik SK, Li DY, Cui M, et al. Synthesis and evaluation of peptidyl α,β-unsaturated carbonyl derivatives as anti-malarial calpain inhibitors. Arch Pharm Res. 2012;35(3):469–479.
  • Skinner-Adams TS, Lowther J, Teuscher F, et al. Identification of phosphinate dipeptide analog inhibitors directed against the Plasmodium falciparum M17 leucine aminopeptidase as lead antimalarial compounds. J Med Chem. 2007;50(24):6024–6031.
  • Harris KS, Casey JL, Coley AM, et al. Rapid optimization of a peptide inhibitor of malaria parasite invasion by comprehensive N-methyl scanning. J Biol Chem. 2009;284(14):9361–9371.
  • Silva AF, Torres MT, Silva LS, et al. Angiotensin II-derived constrained peptides with antiplasmodial activity and suppressed vasoconstriction. Sci Rep. 2017;7(1):14326.
  • Torrent M, Pulido D, Rivas L, et al. Antimicrobial peptide action on parasites. Curr Drug Targets. 2012;13(9):1138–1147.
  • Kumar M, Vijayakrishnan R, Subba Rao G. In silico structure-based design of a novel class of potent and selective small peptide inhibitor of Mycobacterium tuberculosis Dihydrofolate reductase, a potential target for anti-TB drug discovery. Mol Divers. 2010;14(3):595–604.
  • Kavanagh ME, Gray JL, Gilbert SH, et al. Substrate fragmentation for the design of M. tuberculosis CYP121 inhibitors. ChemMedChem. 2016;11(17):1924–1935.
  • McLean KJ, Carroll P, Lewis DG, et al. Characterization of active site structure in CYP121. A cytochrome P450 essential for viability of Mycobacterium tuberculosis H37Rv. J Biol Chem. 2008;283(48):33406–33416.
  • McLean KJ, Cheesman MR, Rivers SL, et al. Expression, purification and spectroscopic characterization of the cytochrome P450 CYP121 from Mycobacterium tuberculosis. J Inorg Biochem. 2002;91(4):527–541.
  • Ahmad Z, Sharma S, Khuller GK. In vitro and ex vivo antimycobacterial potential of azole drugs against Mycobacterium tuberculosis H37Rv. FEMS Microbiol Lett. 2005;251(1):19–22.
  • Ahmad Z, Sharma S, Khuller GK. Azole antifungals as novel chemotherapeutic agents against murine tuberculosis. FEMS Microbiol Lett. 2006;261(2):181–186.
  • Ahmad Z, Sharma S, Khuller GK. The potential of azole antifungals against latent/persistent tuberculosis. FEMS Microbiol Lett. 2006;258(2):200–203.
  • Kumar NS, Mohandas C. Antimycobacterial activity of cyclic dipeptides isolated from Bacillus sp. N strain associated with entomopathogenic nematode. Pharm Biol. 2014;52(1):91–96.
  • Krasnov VP, Vigorov AY, Musiyak VV, Nizova IA, et al. Synthesis and antimycobacterial activity of N-(2-aminopurin-6-yl) and N-(purin-6-yl) amino acids and dipeptides. Bioorg Med Chem Lett. 2016;26(11):2645–2648.
  • Chen L, Liu Y, Wang S, et al. Antiviral activity of peptide inhibitors derived from the protein E stem against Japanese encephalitis and Zika viruses. Antiviral Res. 2017;141:140–149.
  • Li Y, Zhang Z, Phoo WW, et al. Structural dynamics of Zika virus NS2B-NS3 protease binding to dipeptide inhibitors. Structure. 2017;25(8):1242–1250.e3.
  • Dighe SN, Ekwudu O, Dua K, et al. Recent update on anti-dengue drug discovery. Eur J Med Chem. 2019;176:431–455.
  • Lim SP. Dengue drug discovery: progress, challenges and outlook. Antiviral Res. 2019;163:156–178.
  • Low JG, Ooi EE, Vasudevan SG. Current status of dengue therapeutics research and development. J Infect Dis. 2017;215(suppl_2):S96–S102.
  • Villalta F, Rachakonda G. Advances in preclinical approaches to Chagas disease drug discovery. Expert Opin Drug Discov. 2019;14(11):1161–1174.
  • Cazzulo JJ, Cazzulo Franke MC, Martínez J, et al. Some kinetic properties of a cysteine proteinase (cruzipain) from Trypanosoma cruzi. Biochim Biophys Acta. 1990;1037(2):186–191.
  • Harth G, Andrews N, Mills AA, et al. Peptide-fluoromethyl ketones arrest intracellular replication and intercellular transmission of Trypanosoma cruzi. Mol Biochem Parasitol. 1993;58(1):17–24.
  • Chung MC, Gonçalves MF, Colli W, et al. Synthesis and in vitro evaluation of potential antichagasic dipeptide prodrugs of primaquine. J Pharm Sci. 1997;86(10):1127–1131.
  • Kaur K, Jain M, Khan SI, et al. Amino acid, dipeptide and pseudodipeptide conjugates of ring-substituted 8-aminoquinolines: synthesis and evaluation of anti-infective, β-haematin inhibition and cytotoxic activities. Eur J Med Chem. 2012;52:230–241.
  • Pérez-Cordero JJ, Lozano JM, Cortés J, et al. Leishmanicidal activity of synthetic antimicrobial peptides in an infection model with human dendritic cells. Peptides. 2011;32(4):683–690.
  • Savoia D, Guerrini R, Marzola E, et al. Synthesis and antimicrobial activity of dermaseptin S1 analogues. Bioorg Med Chem. 2008;16(17):8205–8209.
  • Mangoni ML. Temporins, anti-infective peptides with expanding properties. Cell Mol Life Sci. 2006;63(9):1060–1069.
  • Lynn MA, Kindrachuk J, Marr AK, Jenssen H, et al. Effect of BMAP-28 antimicrobial peptides on Leishmania major promastigote and amastigote growth: role of leishmanolysin in parasite survival. PLoS Negl Trop Dis. 2011;5(5):e1141
  • Löfgren SE, Miletti LC, Steindel M, et al. Trypanocidal and leishmanicidal activities of different antimicrobial peptides (AMPs) isolated from aquatic animals. Exp Parasitol. 2008;118(2):197–202.
  • Guerrero E, Saugar JM, Matsuzaki K, et al. Role of positional hydrophobicity in the leishmanicidal activity of magainin 2. Antimicrob Agents Chemother. 2004;48(8):2980–2986.
  • Lozano JM, Cuadrado BS, Delgado G, et al. Cationic peptides harboring antibiotic capacity are selective for Leishmania panamensis and Leishmania major. J Microb Biochem Technol. 2014;6(2):54–62.
  • Fairlie WD, Spurck TP, McCoubrie JE, et al. Inhibition of malaria parasite development by a cyclic peptide that targets the vital parasite protein SERA5. Infect Immun. 2008;76(9):4332–4344.
  • Gardiner DL, Trenholme KR, Skinner-Adams TS, et al. Overexpression of leucyl aminopeptidase in Plasmodium falciparum parasites. Target for the antimalarial activity of bestatin. J Biol Chem. 2006;281(3):1741–1745.
  • Triglia T, Healer J, Caruana SR, et al. Apical membrane antigen 1 plays a central role in erythrocyte invasion by Plasmodium species. Mol Microbiol. 2000;38(4):706–718.
  • Ilvie O, Franetich JF, Charrin S, et al. A role for apical membrane antigen 1 during invasion of hepatocytes by Plasmodium falciparum sporozoites. J Biol Chem. 2004;279(10):9490–9496.
  • Proellocks NI, Kovacevic S, Ferguson DJ, et al. Plasmodium falciparum Pf34, a novel GPI-anchored rhoptry protein found in detergent-resistant microdomains. Int J Parasitol. 2007;37(11):1233–1241.
  • Arévalo-Pinzón G, Curtidor H, Vanegas M, et al. Conserved high activity binding peptides from the Plasmodium falciparum Pf34 rhoptry protein inhibit merozoites in vitro invasion of red blood cells. Peptides. 2010;31(11):1987–1994.
  • Yin LM, Edwards MA, Li J, et al. Roles of hydrophobicity and charge distribution of cationic antimicrobial peptides in peptide-membrane interactions. J Biol Chem. 2012;287(10):7738–7745.
  • Méndez-Samperio P. Role of antimicrobial peptides in host defense against mycobacterial infections. Peptides. 2008;29(10):1836–1841.
  • Seo MD, Won HS, Kim JH, et al. Antimicrobial peptides for therapeutic applications: a review. Molecules. 2012;17(10):12276–12286.
  • Ramón-García S, Mikut R, Ng C, et al. Targeting Mycobacterium tuberculosis and other microbial pathogens using improved synthetic antibacterial peptides. Antimicrob Agents Chemother. 2013;57(5):2295–2303.
  • Lan Y, Lam JT, Siu GK, et al. Cationic amphipathic D-enantiomeric antimicrobial peptides with in vitro and ex vivo activity against drug-resistant Mycobacterium tuberculosis. Tuberculosis (Edinb). 2014;94(6):678–689.
  • Vermeer LS, Lan Y, Abbate V, et al. Conformational flexibility determines selectivity and antibacterial, antiplasmodial, and anticancer potency of cationic α-helical peptides. J Biol Chem. 2012;287(41):34120–34133.
  • Rivas-Santiago B, Cervantes-Villagrana A, Sada E, et al. Expression of beta defensin 2 in experimental pulmonary tuberculosis: tentative approach for vaccine development. Arch Med Res. 2012;43(4):324–328.
  • Carroll J, Draper LA, O'Connor PM, et al. Comparison of the activities of the lantibiotics nisin and lacticin 3147 against clinically significant mycobacteria. Int J Antimicrob Agents. 2010;36(2):132–136.
  • Jonge MI, Pehau-Arnaudet G, Fretz MM, et al. ESAT-6 from Mycobacterium tuberculosis dissociates from its putative chaperone CFP-10 under acidic conditions and exhibits membrane-lysing activity. J Bacteriol. 2007;189(16):6028–6034.
  • Volkman HE, Clay H, Beery D, et al. Tuberculous granuloma formation is enhanced by a mycobacterium virulence determinant. PLoS Biol. 2004;2(11):e367.
  • Samuchiwal SK, Tousif S, Singh DK, et al. A peptide fragment from the human COX3 protein disrupts association of Mycobacterium tuberculosis virulence proteins ESAT-6 and CFP10, inhibits mycobacterial growth and mounts protective immune response. BMC Infect Dis. 2014;14:355.
  • Doi T, Yamada H, Yajima T, et al. H2-M3-restricted CD8+ T cells induced by peptide-pulsed dendritic cells confer protection against Mycobacterium tuberculosis. J Immunol. 2007;178(6):3806–3813.
  • Lauvau G, Pamer EG. CD8 T cell detection of bacterial infection: sniffing for formyl peptides derived from Mycobacterium tuberculosis. J Exp Med. 2001;193(10):F35–F39.
  • Mir SA, Sharma S. Immunotherapeutic potential of N-formylated peptides of ESAT-6 and glutamine synthetase in experimental tuberculosis. Int Immunopharmacol. 2014;18(2):298–303.
  • Kopian T, Kandror O, Tsu C, et al. Cleavage specificity of Mycobacterium tuberculosis ClpP1P2 protease and identification of novel peptide substrates and boronate inhibitors with anti-bacterial activity. J Biol Chem. 2015;290(17):11008–11020.
  • Famulla K, Sass P, Malik I, et al. Acyldepsipeptide antibiotics kill mycobacteria by preventing the physiological functions of the ClpP1P2 protease. Mol Microbiol. 2016;101(2):194–209.
  • Brötz-Oesterhelt H, Beyer D, Kroll HP, et al. Dysregulation of bacterial proteolytic machinery by a new class of antibiotics. Nat Med. 2005;11(10):1082–1087.
  • Hinzen B, Raddatz S, Paulsen H, et al. Medicinal chemistry optimization of acyldepsipeptides of the enopeptin class antibiotics. ChemMedChem. 2006;1(7):689–693.
  • Gavrish E, Sit CS, Cao S, et al. Lassomycin, a ribosomally synthesized cyclic peptide, kills Mycobacterium tuberculosis by targeting the ATP-dependent protease ClpC1P1P2. Chem Biol. 2014;21(4):509–518.
  • Gao W, Kim JY, Anderson JR, et al. The cyclic peptide ecumicin targeting ClpC1 is active against Mycobacterium tuberculosis in vivo. Antimicrob Agents Chemother. 2015;59(2):880–889.
  • Masood MM, Pillalamarri VK, Irfan M, Aneja B, et al. Diketo acids and their amino acid/dipeptidicanalogues as promising scaffolds for the development of bacterial methionine aminopeptidase inhibitors. RSC Adv. 2015;5(43):34173–34183.
  • Graz CJ, Grant GD, Brauns SC, et al. Cyclic dipeptides in the induction of maturation for cancer therapy. J Pharm Pharmacol. 2000;52(1):75–82.
  • Brezden A, Mohamed MF, Nepal M, et al. Correction to "dual targeting of intracellular pathogenic bacteria with a cleavable conjugate of kanamycin and an antibacterial cell-penetrating peptide". J Am Chem Soc. 2018;140(40):13125–13126.
  • Rhaiem RB, Houimel M. Targeting Leishmania major parasite with peptides derived from a combinatorial phage display library. Acta Trop. 2016;159:11–19.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.