472
Views
5
CrossRef citations to date
0
Altmetric
Review Articles

Characteristics of SARS-CoV2 that may be useful for nanoparticle pulmonary drug delivery

, , , , &
Pages 233-243 | Received 17 May 2021, Accepted 18 Aug 2021, Published online: 29 Aug 2021

References

  • De Backer L, Cerrada A, Pérez-Gil J, et al. Bio-inspired materials in drug delivery: exploring the role of pulmonary surfactant in siRNA inhalation therapy. J Control Release. 2015;220(Pt B):642–650.
  • Patil TS, Deshpande AS, Deshpande S, et al. Targeting pulmonary tuberculosis using nanocarrier-based dry powder inhalation: current status and futuristic need. J Drug Target. 2019;27(1):12–27.
  • Ruge CA, Kirch J, Lehr C-M. Pulmonary drug delivery: from generating aerosols to overcoming biological barriers—therapeutic possibilities and technological challenges. Lancet Respir Med. 2013;1(5):402–413.
  • Katare YK, Piazza JE, Bhandari J, et al. Intranasal delivery of antipsychotic drugs. Schizophr Res. 2017;184:2–13.
  • Paranjpe M, Müller-Goymann CC. Nanoparticle-mediated pulmonary drug delivery: a review. Int J Mol Sci. 2014;15(4):5852–5873.
  • Liu Q, Zhang Q. Nanoparticle systems for nose-to-brain delivery. Brain targeted drug delivery system. Amsterdam: Elsevier; 2019. p. 219–239.
  • Ghadiri M, Young PM, Traini D. Strategies to enhance drug absorption via nasal and pulmonary routes. Pharmaceutics. 2019;11(3):113.
  • Medhi R, Srinoi P, Ngo N, et al. Nanoparticle-based strategies to combat COVID-19. ACS Appl Nano Mater. 2020;3(9):8557–8580.
  • Chan SK, Du P, Ignacio C, et al. Biomimetic virus-like particles as severe acute respiratory syndrome coronavirus 2 diagnostic tools. ACS Nano. 2021;15(1):1259–1272.
  • Witika BA, Makoni PA, Mweetwa LL, et al. Nano-biomimetic drug delivery vehicles: potential approaches for COVID-19 treatment. Molecules. 2020;25(24):5952.
  • Mariano G, Farthing RJ, Lale-Farjat SL, et al. Structural characterization of SARS-CoV-2: where we are, and where we need to be. Front Mol Biosci. 2020;7:605236.
  • Brenner JS, Kiseleva RY, Glassman PM, et al. The new frontiers of the targeted interventions in the pulmonary vasculature: precision and safety (2017 Grover Conference Series). Pulm Circ. 2018;8(1):2045893217752329.
  • Lindsley WG, Pearce TA, Hudnall JB, et al. Quantity and size distribution of cough-generated aerosol particles produced by influenza patients during and after illness. J Occup Environ Hyg. 2012;9(7):443–449.
  • Madas BG, Füri P, Farkas Á, et al. Deposition distribution of the new coronavirus (SARS-CoV-2) in the human airways upon exposure to cough-generated droplets and aerosol particles. Sci Rep. 2020;10(1):22430–22438.
  • Muralidharan P, Malapit M, Mallory E, et al. Inhalable nanoparticulate powders for respiratory delivery. Nanomedicine. 2015;11(5):1189–1199.
  • Cazzola M, Cavalli F, Usmani OS, et al. Advances in pulmonary drug delivery devices for the treatment of chronic obstructive pulmonary disease. Expert Opin Drug Deliv. 2020;17(5):635–646.
  • Myrdal PB, Sheth P, Stein SW. Advances in metered dose inhaler technology: formulation development. AAPS PharmSciTech. 2014;15(2):434–455.
  • Zhou QT, Leung SSY, Tang P, et al. Inhaled formulations and pulmonary drug delivery systems for respiratory infections. Adv Drug Deliv Rev. 2015;85:83–99.
  • Klein DM, Poortinga A, Verhoeven FM, et al. Degradation of lipid based drug delivery formulations during nebulization. Chem Phys. 2021;547:111192.
  • Iwanaga T, Tohda Y, Nakamura S, et al. The Respimat® soft mist inhaler: implications of drug delivery characteristics for patients. Clin Drug Investig. 2019;39(11):1021–1030.
  • Wang Z, Cuddigan JL, Gupta SK, et al. Nanocomposite microparticles (nCmP) for the delivery of tacrolimus in the treatment of pulmonary arterial hypertension. Int J Pharm. 2016;512(1):305–313.
  • Mejías JC, Roy K. In-vitro and in-vivo characterization of a multi-stage enzyme-responsive nanoparticle-in-microgel pulmonary drug delivery system. J Controlled Release. 2019;316:393–403.
  • Keil TW, Feldmann DP, Costabile G, et al. Characterization of spray dried powders with nucleic acid-containing PEI nanoparticles. Eur J Pharm Biopharm. 2019;143:61–69.
  • Hu Q, Bai X, Hu G, et al. Unveiling the molecular structure of pulmonary surfactant corona on nanoparticles. ACS Nano. 2017;11(7):6832–6842.
  • Xu Y, Deng L, Ren H, et al. Transport of nanoparticles across pulmonary surfactant monolayer: a molecular dynamics study. Phys Chem Chem Phys. 2017;19(27):17568–17576.
  • Li J, Ma X, Guo S, et al. A hydrophobic-interaction-based mechanism triggers docking between the SARS-CoV-2 spike and angiotensin-converting enzyme 2. Glob Chall. 2020;4(12):2000067.
  • Chen P, Zhang Z, Xing J, et al. Physicochemical properties of nanoparticles affect translocation across pulmonary surfactant monolayer. Mol Phys. 2017;115(24):3143–3154.
  • Liu Q, Guan J, Qin L, et al. Physicochemical properties affecting the fate of nanoparticles in pulmonary drug delivery. Drug Discov Today. 2020;25(1):150–159.
  • Swiss Institute of Bioinformatics. ExPASy (Bioinformatics Resource Tool): ProtParam Tool; [cited 2021 Aug 18]. Available from:https://web.expasy.org/protparam/.
  • Scheller C, Krebs F, Minkner R, et al. Physicochemical properties of SARS-CoV-2 for drug targeting, virus inactivation and attenuation, vaccine formulation and quality control. Electrophoresis. 2020;41(13–14):1137–1151.
  • Meng Q, Sun Y, Cong H, et al. An overview of chitosan and its application in infectious diseases. Drug Deliv Transl Res. 2021:11(1340–1351):1–12.
  • Ni R, Zhao J, Liu Q, et al. Nanocrystals embedded in chitosan-based respirable swellable microparticles as dry powder for sustained pulmonary drug delivery. Eur J Pharm Sci. 2017;99:137–146.
  • Motiei M, Kashanian S, Lucia LA, et al. Intrinsic parameters for the synthesis and tuned properties of amphiphilic chitosan drug delivery nanocarriers. J Control Release. 2017;260:213–225.
  • Chen D, Liu J, Wu J, et al. Enhancing nanoparticle penetration through airway mucus to improve drug delivery efficacy in the lung. Expert Opin Drug Deliv. 2021;18(5):595–606.
  • Brooks AE. The potential of silk and silk-like proteins as natural mucoadhesive biopolymers for controlled drug delivery. Front Chem. 2015;3:65.
  • Pawłowski PH. Charged amino acids may promote coronavirus SARS-CoV-2 fusion with the host cell. AIMS Biophysics. 2021;8(1):111–120.
  • da Silva LCN, Mendonça JSP, de Oliveira WF, et al. Exploring lectin-glycan interactions to combat COVID-19: lessons acquired from other enveloped viruses. Glycobiology. 2021;31(4):358–371.
  • Mehnath S, Sithika MAA, Arjama M, et al. Sericin-chitosan doped maleate gellan gum nanocomposites for effective cell damage in Mycobacterium tuberculosis. Int J Biol Macromol. 2019;122:174–184.
  • Chen S, Hanning S, Falconer J, et al. Recent advances in non-ionic surfactant vesicles (niosomes): fabrication, characterization, pharmaceutical and cosmetic applications. Eur J Pharm Biopharm. 2019;144:18–39.
  • Siddiquie RY, Agrawal A, Joshi SS. Surface alterations to impart antiviral properties to combat COVID-19 transmission. Trans Indian Natl Acad Eng. 2020;5(2):343–347.
  • Coutard B, Valle C, de Lamballerie X, et al. The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade. Antiviral Res. 2020;176:104742.
  • Mehta M, Tewari D, Gupta G, et al. Oligonucleotide therapy: an emerging focus area for drug delivery in chronic inflammatory respiratory diseases. Chem-Biol Interact. 2019;308:206–215.
  • Qiu Y, Man RC, Liao Q, et al. Effective mRNA pulmonary delivery by dry powder formulation of PEGylated synthetic KL4 peptide. J Control Release. 2019;314:102–115.
  • Schoeman D, Fielding BC. Coronavirus envelope protein: current knowledge. Virol J. 2019;16(1):22–69.
  • Joshi N, Shirsath N, Singh A, et al. Endogenous lung surfactant inspired pH responsive nanovesicle aerosols: pulmonary compatible and site-specific drug delivery in lung metastases. Sci Rep. 2014;4:7085.
  • Silva AS, Sousa AM, Cabral RP, et al. Aerosolizable gold nano-in-micro dry powder formulations for theragnosis and lung delivery. Int J Pharm. 2017;519(1–2):240–249.
  • Mirastschijski U, Dembinski R, Maedler K. Lung surfactant for pulmonary barrier restoration in patients with COVID-19 pneumonia. Front Med. 2020;7:254.
  • Borodina T, Trushina D, Marchenko I, et al. Calcium carbonate-based mucoadhesive microcontainers for intranasal delivery of drugs bypassing the blood–brain barrier. BioNanoSci. 2016;6(3):261–268.
  • Triolo D, Craparo E, Porsio B, et al. Polymeric drug delivery micelle-like nanocarriers for pulmonary administration of beclomethasone dipropionate. Colloids Surf B Biointerfaces. 2017;151:206–214.
  • Porsio B, Craparo EF, Mauro N, et al. Mucus and Cell-Penetrating nanoparticles embedded in nano-into-Micro formulations for pulmonary delivery of ivacaftor in patients with cystic fibrosis. ACS Appl Mater Interfaces. 2018;10(1):165–181.
  • Porsio B, Cusimano MG, Schillaci D, et al. Nano into micro formulations of tobramycin for the treatment of Pseudomonas aeruginosa infections in cystic fibrosis. Biomacromolecules. 2017;18(12):3924–3935.
  • Rodriguez M, Lapierre J, Ojha CR, et al. Intranasal drug delivery of small interfering RNA targeting Beclin1 encapsulated with polyethylenimine (PEI) in mouse brain to achieve HIV attenuation. Sci Rep. 2017;7(1):1862.
  • Price DN, Stromberg LR, Kunda NK, et al. In vivo pulmonary delivery and magnetic-targeting of dry powder nano-in-microparticles. Mol Pharm. 2017;14(12):4741–4750.
  • Zhong Q, Humia BV, Punjabi AR, et al. The interaction of dendrimer-doxorubicin conjugates with a model pulmonary epithelium and their cosolvent-free, pseudo-solution formulations in pressurized metered-dose inhalers. Eur J Pharm Sci. 2017;109:86–95.
  • Zhu X, Kong Y, Liu Q, et al. Inhalable dry powder prepared from folic acid-conjugated docetaxel liposomes alters pharmacodynamic and pharmacokinetic properties relevant to lung cancer chemotherapy. Pulm Pharmacol Ther. 2019;55:50–61.
  • Khan I, Apostolou M, Bnyan R, et al. Paclitaxel-loaded micro or nano transfersome formulation into novel tablets for pulmonary drug delivery via nebulization. Int J Pharm. 2020;575:118919.
  • Abdelrady H, Hathout RM, Osman R, et al. Exploiting gelatin nanocarriers in the pulmonary delivery of methotrexate for lung cancer therapy. Eur J Pharm Sci. 2019;133:115–126.
  • Xu C, Wang Y, Guo Z, et al. Pulmonary delivery by exploiting doxorubicin and cisplatin co-loaded nanoparticles for metastatic lung cancer therapy. J Control Release. 2019;295:153–163.
  • Türeli NG, Torge A, Juntke J, et al. Ciprofloxacin-loaded PLGA nanoparticles against cystic fibrosis P. aeruginosa lung infections. Eur J Pharm Biopharm. 2017;117:363–371.
  • Scolari IR, Páez PL, Sánchez-Borzone ME, et al. Promising Chitosan-Coated Alginate-Tween 80 nanoparticles as rifampicin coadministered ascorbic acid delivery carrier against Mycobacterium tuberculosis. AAPS PharmSciTech. 2019;20(2):67.
  • Preis E, Baghdan E, Agel MR, et al. Spray dried curcumin loaded nanoparticles for antimicrobial photodynamic therapy. Eur J Pharm Biopharm. 2019;142:531–539.
  • Nichols CE, Shepherd DL, Hathaway QA, et al. Reactive oxygen species damage drives cardiac and mitochondrial dysfunction following acute nano-titanium dioxide inhalation exposure. Nanotoxicology. 2018;12(1):32–48.
  • Zhang F, Aquino GV, Dabi A, et al. Assessing the translocation of silver nanoparticles using an in vitro co-culture model of human airway barrier. Toxicol In Vitro. 2019;56:1–9.
  • Wu T, Zhang S, Liang X, et al. The apoptosis induced by silica nanoparticle through endoplasmic reticulum stress response in human pulmonary alveolar epithelial cells. Toxicol In Vitro. 2019;56:126–132.
  • Haque S, Whittaker M, McIntosh MP, et al. A comparison of the lung clearance kinetics of solid lipid nanoparticles and liposomes by following the 3H-labelled structural lipids after pulmonary delivery in rats. Eur J Pharm Biopharm. 2018;125:1–12.
  • Costamagna F, Hillaireau H, Vergnaud J, et al. Nanotoxicology at the particle/micelle frontier: influence of core-polymerization on the intracellular distribution, cytotoxicity and genotoxicity of polydiacetylene micelles. Nanoscale. 2020;12(4):2452–2463.
  • Mendonça MCP, Radaic A, Garcia-Fossa F, et al. The in vivo toxicological profile of cationic solid lipid nanoparticles. Drug Deliv and Transl Res. 2020;10(1):34–42.
  • Jain K, Kesharwani P, Gupta U, et al. Dendrimer toxicity: let’s meet the challenge. Int J Pharm. 2010;394(1–2):122–142.
  • Tagit O, De Ruiter M, Brasch M, et al. Quantum dot encapsulation in virus-like particles with tuneable structural properties and low toxicity. RSC Adv. 2017;7(60):38110–38118.
  • Aldosari BN, Alfagih IM, Almurshedi AS. Lipid nanoparticles as delivery systems for RNA-based vaccines. Pharmaceutics. 2021;13(2):206.
  • Ho W, Gao M, Li F, et al. Next-generation vaccines: nanoparticle-mediated DNA and mRNA delivery. Adv Healthc Mater. 2021;10(8):e2001812.
  • Rhea EM, Logsdon AF, Hansen KM, et al. The S1 protein of SARS-CoV-2 crosses the blood-brain barrier in mice. Nat Neurosci. 2021;24(3):368–378.
  • Petruk G, Puthia M, Petrlova J, et al. SARS-CoV-2 Spike protein binds to bacterial lipopolysaccharide and boosts proinflammatory activity. bioRxiv. 2020.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.