213
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Efficient drug delivery by novel cell-penetrating peptide derived from Midkine, with two heparin binding sites braced by a length-specific helix

, , , &
Pages 326-333 | Received 02 Jun 2021, Accepted 24 Oct 2021, Published online: 09 Nov 2021

References

  • Xie J, Bi Y, Zhang H, et al. Cell-Penetrating peptides in diagnosis and treatment of human diseases: from preclinical research to clinical application. Front Pharmacol. 2020;11:697.
  • Silva S, Almeida AJ, Vale N. Combination of cell-penetrating peptides with nanoparticles for therapeutic application: a review. Biomolecules. 2019;9(1):22.
  • Hu H, Wang J, Wang H, et al. Cell-penetrating peptide-based nanovehicles potentiate lymph metastasis targeting and deep penetration for anti-metastasis therapy. Theranostics. 2018;8(13):3597–3610.
  • Shuai Q, Cai Y, Zhao G, et al. Cell-Penetrating peptide modified PEG-PLA micelles for efficient PTX delivery. Int J Mol Sci. 2020;21(5):1856.
  • Vives E, Brodin P, Lebleu B. A truncated HIV-1 TAT protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J Biol Chem. 1997;272(25):16010–16017.
  • Joliot A, Pernelle C, Deagostini-Bazin H, et al. Antennapedia homeobox peptide regulates neural morphogenesis. Proc Natl Acad Sci U S A. 1991;88(5):1864–1868.
  • Reissmann S. Cell penetration: scope and limitations by the application of cell-penetrating peptides. J Pept Sci. 2014;20(10):760–784.
  • Kalafatovic D, Giralt E. Cell-penetrating peptides: design strategies beyond primary structure and amphipathicity. Molecules. 2017;22(11):1929.
  • Eiriksdottir E, Konate K, Langel U, et al. Secondary structure of cell-penetrating peptides controls membrane interaction and insertion. Biochim Biophys Acta. 2010;1798(6):1119–1128.
  • Nygren P, Lundqvist M, Liedberg B, et al. Secondary structure in de novo designed peptides induced by electrostatic interaction with a lipid bilayer membrane. Langmuir. 2010;26(9):6437–6448.
  • Futaki S, Suzuki T, Ohashi W, et al. Arginine-rich peptides. An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. J Biol Chem. 2001;276(8):5836–5840.
  • Xu D, Esko JD. Demystifying heparan sulfate-protein interactions. Annu Rev Biochem. 2014;83:129–157.
  • Prince RN, Schreiter ER, Zou P, et al. The heparin-binding domain of HB-EGF mediates localization to sites of cell–cell contact and prevents HB-EGF proteolytic release. J Cell Sci. 2010;123(Pt 13):2308–2318.
  • Krilleke D, Ng YS, Shima DT. The heparin-binding domain confers diverse functions of VEGF-A in development and disease: a structure–function study. Biochem Soc Trans. 2009;37(Pt 6):1201–1206.
  • Choi DH, Lee D, Jo BS, et al. A synthetic cell-penetrating heparin-binding peptide derived from BMP4 with anti-inflammatory and chondrogenic functions for the treatment of arthritis. Int J Mol Sci. 2020;21(12):4251.
  • Cao XW, Yang XZ, Du X, et al. Structure optimisation to improve the delivery efficiency and cell selectivity of a tumour-targeting cell-penetrating peptide. J Drug Target. 2018;26(9):777–792.
  • Bai XD, Cao XW, Chen YH, et al. Constructing a better binding peptide for drug delivery targeting the interleukin-4 receptor. J Drug Target. 2020;28(9):970–981.
  • Xu YY, Cao XW, Fu LY, et al. Screening and characterization of a novel high-efficiency tumor-homing cell-penetrating peptide from the buffalo cathelicidin family. J Pept Sci. 2019;25(9):e3201.
  • Guo Z, Peng H, Kang J, et al. Cell-penetrating peptides: possible transduction mechanisms and therapeutic applications. Biomed Rep. 2016;4(5):528–534.
  • Muramatsu T. Midkine, a heparin-binding cytokine with multiple roles in development, repair and diseases. Proc Jpn Acad Ser B Phys Biol Sci. 2010;86(4):410–425.
  • Yang J, Luo Y, Shibu MA, et al. Cell-penetrating peptides: efficient vectors for vaccine delivery. Curr Drug Deliv. 2019;16(5):430–443.
  • Antonella B, Anna T, Maria T, et al. Cell penetrating peptides as molecular carriers for anti-cancer agents. Molecules. 2018;23(2):295.
  • Ryu J, Kim H, Park HH, et al. Protein-stabilizing and cell-penetrating properties of α-helix domain of 30Kc19 protein. Biotechnol J. 2016;11(11):1443–1451.
  • Zhang F, Yang D, Jiang S, et al. Current delivery strategies to improve the target of cell penetrating peptides used for tumor-related therapeutics. Curr Pharm Des. 2018;24(5):541–548.
  • Quan X, Sun D, Zhou J. Molecular mechanism of HIV-1 TAT peptide and its conjugated gold nanoparticles translocating across lipid membranes. Phys Chem Chem Phys. 2019;21(20):10300–10310.
  • Kersemans V, Cornelissen B. Targeting the tumour: cell penetrating peptides for molecular imaging and radiotherapy. Pharmaceuticals. 2010;3(3):600–620.
  • Lundberg P, EL-Andaloussi S, Sutlu T, et al. Delivery of short interfering RNA using endosomolytic cell-penetrating peptides. FASEB J. 2007;21(11):2664–2671.
  • Kling J. Fresh from the biotech pipeline-2013. Nat Biotechnol. 2014;32(2):121–124.
  • Habault J, Poyet JL. Recent advances in cell penetrating peptide-based anticancer therapies. Molecules. 2019;24(5):927.
  • Islam MM, Odahara M, Yoshizumi T, et al. Cell-penetrating peptide-mediated transformation of large plasmid DNA into Escherichia coli. ACS Synth Biol. 2019;8(5):1215–1218.
  • Guidotti G, Brambilla L, Rossi D. Cell-Penetrating peptides: from basic research to clinics. Trends Pharmacol Sci. 2017;38(4):406–424.
  • Rothbard JB, Jessop TC, Lewis RS, et al. Role of membrane potential and hydrogen bonding in the mechanism of translocation of guanidinium-rich peptides into cells. J Am Chem Soc. 2004;126(31):9506–9507.
  • Smith BA, Daniels DS, Coplin AE, et al. Minimally cationic cell-permeable miniature proteins via alpha-helical arginine display. J Am Chem Soc. 2008;130(10):2948–2949.
  • Ohgita T, Takechi-Haraya Y, Nadai R, et al. A novel amphipathic cell-penetrating peptide based on the N-terminal glycosaminoglycan binding region of human apolipoprotein E. Biochim Biophys Acta Biomembr. 2019;1861(3):541–549.
  • Fromm JR, Hileman RE, Caldwell EE, et al. Differences in the interaction of heparin with arginine and lysine and the importance of these basic amino acids in the binding of heparin to acidic fibroblast growth factor. Arch Biochem Biophys. 1995;323(2):279–287.
  • Shin DH, Jo JY, Kim SH, et al. Midkine is a potential therapeutic target of tumorigenesis, angiogenesis, and metastasis in non-small cell lung cancer. Cancers. 2020;12(9):2402.
  • Malov SI, Malov IV, Kuvshinov AG, et al. Search for effective serum tumor markers for early diagnosis of hepatocellular carcinoma associated with hepatitis C. Sovrem Tekhnologii Med. 2021;13(1):27–33.
  • Libbrecht L, Severi T, Cassiman D, et al. Glypican-3 expression distinguishes small hepatocellular carcinomas from cirrhosis, dysplastic nodules, and focal nodular hyperplasia-like nodules. Am J Surg Pathol. 2006;30(11):1405–1411.
  • O'Connell MP, Weeraratna AT. A spoonful of sugar makes the melanoma go: the role of heparan sulfate proteoglycans in melanoma metastasis. Pigment Cell Melanoma Res. 2011;24(6):1133–1147.
  • Kitaya K, Tada Y, Hayashi T, et al. Diverse functions of uterine proteoglycans in human reproduction (review). Mol Med Rep. 2012;5(6):1375–1381.
  • Nagarajan A, Malvi P, Wajapeyee N. Heparan sulfate and heparan sulfate proteoglycans in cancer initiation and progression. Front Endocrinol. 2018;9:483.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.