565
Views
3
CrossRef citations to date
0
Altmetric
Review Articles

Effects and mechanisms of natural plant active compounds for the treatment of osteoclast-mediated bone destructive diseases

, , , , , & show all
Pages 394-412 | Received 11 Sep 2021, Accepted 29 Nov 2021, Published online: 15 Dec 2021

References

  • Young MF. Skeletal biology: Where matrix meets mineral. Matrix Biol. 2016;52–54:1–6.
  • Terruzzi I, Montesano A, Senesi P, et al. L-carnitine reduces oxidative stress and promotes cells differentiation and bone matrix proteins expression in human osteoblast-like cells. Biomed Res Int. 2019;2019:5678548.
  • Karsenty G. The complexities of skeletal biology. Nature. 2003;423(6937):316–318.
  • Delitala AP, Scuteri A, Doria C. Thyroid hormone diseases and osteoporosis. J Clin Med. 2020;9(4):1034.
  • Li S, Xu W, Xing Z, et al. A conditional knockout mouse model reveals a critical role of PKD1 in osteoblast differentiation and bone development. Sci Rep. 2017;7:40505.
  • Ross RD, Anderson K, Davison R, et al. Osteoporosis treatments affect bone matrix maturation in a rat model of induced cortical remodeling. JBMR Plus. 2020;4(4):e10344.
  • Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature. 2003;423(6937):337–342.
  • Meng J, Hong J, Zhao C, et al. Low-intensity pulsed ultrasound inhibits RANKL-induced osteoclast formation via modulating ERK-c-Fos-NFATc1 signaling Cascades. Am J Transl Res. 2018;10(9):2901–2910.
  • Ohnishi T, et al. Molecular targeted therapy for the bone loss secondary to pyogenic spondylodiscitis using medications for osteoporosis: a literature review. Int J Mol Sci. 2021;22:4453.
  • Woolf AD, Pfleger B. Burden of major musculoskeletal conditions. Bull World Health Organ. 2003;81(9):646–656.
  • Beral V. Breast cancer and hormone-replacement therapy in the million women study. Lancet. 2003;362(9382):419–427.
  • Verron E, Bouler JM. Is bisphosphonate therapy compromised by the emergence of adverse bone disorders? Drug Discov Today. 2014;19(3):312–319.
  • Allen MR. Recent advances in understanding bisphosphonate effects on bone mechanical properties. Curr Osteoporos Rep. 2018;16(2):198–204.
  • Tanaka M, Hashimoto Y, Hasegawa C, et al. Antiresorptive effect of a cathepsin K inhibitor ONO-5334 and its relationship to BMD increase in a phase II trial for postmenopausal osteoporosis. BMC Musculoskelet Disord. 2017;18(1):267.
  • Pinkerton JV, Thomas S. Use of SERMs for treatment in postmenopausal women. J Steroid Biochem Mol Biol. 2014;142:142–154.
  • Cappuzzo KA, Delafuente JC. Teriparatide for severe osteoporosis. Ann Pharmacother. 2004;38(2):294–302.
  • Ponnapakkam T, Katikaneni R, Sakon J, et al. Treating osteoporosis by targeting parathyroid hormone to bone. Drug Discov Today. 2014;19(3):204–208.
  • Nuti R, Brandi ML, Checchia G, et al. Guidelines for the management of osteoporosis and fragility fractures. Intern Emerg Med. 2019;14(1):85–102.
  • Rossouw JE, Anderson GL, Prentice RL, et al. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the women's health initiative randomized controlled trial. JAMA. 2002;288(3):321–333.
  • Tile L, Cheung AM. Atypical femur fractures: current understanding and approach to management. Ther Adv Musculoskelet Dis. 2020;12:1759720X20916983.
  • Sun X, Wei B, Peng Z, et al. A polysaccharide from the dried rhizome of Drynaria fortunei (Kunze) J. Sm. prevents ovariectomized (OVX)-induced osteoporosis in rats. J Cell Mol Med. 2020;24(6):3692–3700.
  • Ukon Y, et al. Molecular-Based treatment strategies for osteoporosis: a literature review. Int J Mol Sci. 2019;20(10):2557.
  • Zhang H, Xing W-W, Li Y-S, et al. Effects of a traditional Chinese herbal preparation on osteoblasts and osteoclasts. Maturitas. 2008;61(4):334–339.
  • Liu Y, Liu JP, Xia Y. Chinese herbal medicines for treating osteoporosis. Cochrane Database Syst Rev. 2014;(3):CD005467.
  • Chen X, Zhi X, Cao L, et al. Matrine derivate MASM uncovers a novel function for ribosomal protein S5 in osteoclastogenesis and postmenopausal osteoporosis. Cell Death Dis. 2017;8(9):e3037.
  • An J, Yang H, Zhang Q, et al. Natural products for treatment of osteoporosis: the effects and mechanisms on promoting osteoblast-mediated bone formation. Life Sci. 2016;147:46–58.
  • Kim MH, Ryu SY, Bae MA, et al. Baicalein inhibits osteoclast differentiation and induces mature osteoclast apoptosis. Food Chem Toxicol. 2008;46(11):3375–3382.
  • Lu L, Rao L, Jia H, et al. Baicalin positively regulates osteoclast function by activating MAPK/Mitf signalling. J Cell Mol Med. 2017;21(7):1361–1372.
  • Uruno Y, Konishi Y, Suwa A, et al. Discovery of dihydroquinazolinone derivatives as potent, selective, and CNS-penetrant M(1) and M(4) muscarinic acetylcholine receptors agonists. Bioorg Med Chem Lett. 2015;25(22):5357–5361.
  • Zhang D, Zhang J, Fong C, et al. Herba epimedii flavonoids suppress osteoclastic differentiation and bone resorption by inducing G2/M arrest and apoptosis. Biochimie. 2012;94(12):2514–2522.
  • Moriwaki S, Suzuki K, Muramatsu M, et al. Delphinidin, one of the major anthocyanidins, prevents bone loss through the inhibition of excessive osteoclastogenesis in osteoporosis model mice. PLoS One. 2014;9(5):e97177.
  • Imangali N, et al. The dietary anthocyanin delphinidin prevents bone resorption by inhibiting Rankl-induced differentiation of osteoclasts in a medaka (Oryzias latipes) model of osteoporosis. J Fish Biol. 2021;98(4):1018–1030.
  • Sakai E, Shimada-Sugawara M, Yamaguchi Y, et al. Fisetin inhibits osteoclastogenesis through prevention of RANKL-induced ROS production by Nrf2-mediated up-regulation of phase II antioxidant enzymes. J Pharmacol Sci. 2013;121(4):288–298.
  • Huh J-E, Jung I-T, Choi J, et al. The natural flavonoid galangin inhibits osteoclastic bone destruction and osteoclastogenesis by suppressing NF-kappaB in collagen-induced arthritis and bone marrow-derived macrophages. Eur J Pharmacol. 2013;698(1–3):57–66.
  • Kunnumakkara AB, Nair AS, Ahn KS, et al. Gossypin, a pentahydroxy glucosyl flavone, inhibits the transforming growth factor beta-activated kinase-1-mediated NF-kappaB activation pathway, leading to potentiation of apoptosis, suppression of invasion, and abrogation of osteoclastogenesis. Blood. 2007;109(12):5112–5121.
  • Nepal M, Choi HJ, Choi B-Y, et al. Hispidulin attenuates bone resorption and osteoclastogenesis via the RANKL-induced NF-kappaB and NFATc1 pathways. Eur J Pharmacol. 2013;715(1–3):96–104.
  • Jeong J-C, Lee J-W, Yoon C-H, et al. Drynariae rhizoma promotes osteoblast differentiation and mineralization in MC3T3-E1 cells through regulation of bone morphogenetic protein-2, alkaline phosphatase, type I collagen and collagenase-1. Toxicol In Vitro. 2004;18(6):829–834.
  • Ko SY. Myricetin suppresses LPS-induced MMP expression in human gingival fibroblasts and inhibits osteoclastogenesis by downregulating NFATc1 in RANKL-induced RAW 264.7 cells. Arch Oral Biol. 2012;57(12):1623–1632.
  • Kim T-H, Jung JW, Ha BG, et al. The effects of luteolin on osteoclast differentiation, function in vitro and ovariectomy-induced bone loss. J Nutr Biochem. 2011;22(1):8–15.
  • Shin D-K, Kim M-H, Lee S-H, et al. Inhibitory effects of luteolin on titanium particle-induced osteolysis in a mouse model. Acta Biomater. 2012;8(9):3524–3531.
  • Kim SN, Kim MH, Min YK, et al. Licochalcone a inhibits the formation and bone resorptive activity of osteoclasts. Cell Biol Int. 2008;32(9):1064–1072.
  • Ang ESM, Yang X, Chen H, et al. Naringin abrogates osteoclastogenesis and bone resorption via the inhibition of RANKL-induced NF-kappaB and ERK activation. FEBS Lett. 2011;585(17):2755–2762.
  • Yu KE, Alder KD, Morris MT, et al. Re-appraising the potential of naringin for natural, novel orthopedic biotherapies. Ther Adv Musculoskelet Dis. 2020;12:1759720X20966135.
  • Kim J-Y, Kim JY, Cheon Y-H, et al. Hydroxy-6,7-dimethoxydalbergiquinol inhibits osteoclast differentiation through down-regulation of Akt, c-Fos and NFATc1. Int Immunopharmacol. 2014;20(1):213–220.
  • Lee SH, Kim JK, Jang HD. Genistein inhibits osteoclastic differentiation of RAW 264.7 cells via regulation of ROS production and scavenging. Int J Mol Sci. 2014;15(6):10605–10621.
  • Zhai X, Lin M, Zhang F, et al. Dietary flavonoid genistein induces Nrf2 and phase II detoxification gene expression via ERKs and PKC pathways and protects against oxidative stress in Caco-2 cells. Mol Nutr Food Res. 2013;57(2):249–259.
  • Quan G-H, Wang H, Cao J, et al. Calycosin suppresses RANKL-Mediated osteoclastogenesis through inhibition of MAPKs and NF-kappaB. Int J Mol Sci. 2015;16(12):29496–29507.
  • Wu X, Deng X, Wang J, et al. Baicalin inhibits cell proliferation and inflammatory cytokines induced by tumor necrosis factor α (TNF-α) in human immortalized keratinocytes (HaCaT) human keratinocytes by inhibiting the STAT3/nuclear factor kappa B (NF-κB) signaling pathway. Med Sci Monit. 2020;26:e919392.
  • Zhang X, Lin X, Liu T, et al. Osteogenic enhancement between icariin and bone morphogenetic protein 2: a potential osteogenic compound for bone tissue engineering. Front Pharmacol. 2019;10:201.
  • Nagaoka M, et al. A Delphinidin-Enriched maqui berry extract improves bone metabolism and protects against bone loss in osteopenic mouse models. Antioxidants. 2019;8(9):386.
  • Wang HX, Tang C. Galangin suppresses human laryngeal carcinoma via modulation of caspase-3 and AKT signaling pathways. Oncol Rep. 2017;38(2):703–714.
  • Sun X, Zhang J, Wang Z, et al. Licorice isoliquiritigenin-encapsulated mesoporous silica nanoparticles for osteoclast inhibition and bone loss prevention. Theranostics. 2019;9(18):5183–5199.
  • Meng Z, Wang M, Xing J, et al. Myricetin ameliorates atherosclerosis in the low-density-lipoprotein receptor knockout mice by suppression of cholesterol accumulation in macrophage foam cells. Nutr Metab. 2019;16:25.
  • Balci Yuce H, Toker H, Yildirim A, et al. The effect of luteolin in prevention of periodontal disease in Wistar rats. J Periodontol. 2019;90(12):1481–1489.
  • Yu G-Y, Zheng G-Z, Chang B, et al. Naringin stimulates osteogenic differentiation of rat bone marrow stromal cells via activation of the notch signaling pathway. Stem Cells Int. 2016;2016:7130653.
  • Ha H, Lee HY, Lee J-H, et al. Formononetin prevents ovariectomy-induced bone loss in rats. Arch Pharm Res. 2010;33(4):625–632.
  • Du N, Song L, Li Y, et al. Phytoestrogens protect joints in collagen induced arthritis by increasing IgG glycosylation and reducing osteoclast activation. Int Immunopharmacol. 2020;83:106387.
  • Xu H, Zhao H, Lu C, et al. Triptolide inhibits osteoclast differentiation and bone resorption in vitro via enhancing the production of IL-10 and TGF-β1 by regulatory T cells. Mediators Inflamm. 2016;2016:8048170.
  • Huang J, Zhou L, Wu H, et al. Triptolide inhibits osteoclast formation, bone resorption, RANKL-mediated NF-B activation and titanium particle-induced osteolysis in a mouse model. Mol Cell Endocrinol. 2015;399:346–353.
  • Park B. Triptolide, a diterpene, inhibits osteoclastogenesis, induced by RANKL signaling and human cancer cells. Biochimie. 2014;105:129–136.
  • Zhai ZJ, Li HW, Liu GW, et al. Andrographolide suppresses RANKL-induced osteoclastogenesis in vitro and prevents inflammatory bone loss in vivo. Br J Pharmacol. 2014;171(3):663–675.
  • Wang Y, Xu X, Wang H-B, et al. 17-Hydroxy-jolkinolide a inhibits osteoclast differentiation through suppressing the activation of NF-kappaB and MAPKs. Int Immunopharmacol. 2015;29(2):513–520.
  • Ma X, Liu Y, Zhang Y, et al. Jolkinolide B inhibits RANKL-induced osteoclastogenesis by suppressing the activation NF-kappaB and MAPK signaling pathways. Biochem Biophys Res Commun. 2014;445(2):282–288.
  • Li JX, Liu J, He CC, et al. Triterpenoids from Cimicifugae rhizoma, a novel class of inhibitors on bone resorption and ovariectomy-induced bone loss. Maturitas. 2007;58(1):59–69.
  • Kim J-Y, Cheon Y-H, Oh HM, et al. Oleanolic acid acetate inhibits osteoclast differentiation by downregulating PLCgamma2-Ca(2+)-NFATc1 signaling, and suppresses bone loss in mice. Bone. 2014;60:104–111.
  • Xie B-P, Shi L-Y, Li J-P, et al. Oleanolic acid inhibits RANKL-induced osteoclastogenesis via ER alpha/miR-503/RANK signaling pathway in RAW264.7 cells. Biomed Pharmacother. 2019;117:109045.
  • Zhao D, Li X, Zhao Y, et al. Oleanolic acid exerts bone protective effects in ovariectomized mice by inhibiting osteoclastogenesis. J Pharmacol Sci. 2018;137(1):76–85.
  • Gan K, Xu L, Feng X, et al. Celastrol attenuates bone erosion in collagen-Induced arthritis mice and inhibits osteoclast differentiation and function in RANKL-induced RAW264.7. Int Immunopharmacol. 2015;24(2):239–246.
  • Yu M, Chen X, Lv C, et al. Curcumol suppresses RANKL-induced osteoclast formation by attenuating the JNK signaling pathway. Biochem Biophys Res Commun. 2014;447(2):364–370.
  • Kim HJ, Park C, Kim G-Y, et al. Sargassum serratifolium attenuates RANKL-induced osteoclast differentiation and oxidative stress through inhibition of NF-kappaB and activation of the Nrf2/HO-1 signaling pathway. Biosci Trends. 2018;12(3):257–265.
  • Yoon W-J, Kim K-N, Heo S-J, et al. Sargachromanol G inhibits osteoclastogenesis by suppressing the activation NF-kappaB and MAPKs in RANKL-induced RAW 264.7 cells. Biochem Biophys Res Commun. 2013;434(4):892–897.
  • Liang X, et al. Triptolide potentiates the cytoskeleton-stabilizing activity of cyclosporine a in glomerular podocytes via a GSK3beta dependent mechanism. Am J Transl Res. 2020;12(3):800–812.
  • Chiou WF, Liao JF, Huang CY, et al. 2-Methoxystypandrone represses RANKL-mediated osteoclastogenesis by down-regulating formation of TRAF6-TAK1 signalling complexes. Br J Pharmacol. 2010;161(2):321–335.
  • Bao L, Qin L, Liu L, et al. Anthraquinone compounds from Morinda officinalis inhibit osteoclastic bone resorption in vitro. Chem Biol Interact. 2011;194(2–3):97–105.
  • He Y-Q, Zhang Q, Shen Y, et al. Rubiadin-1-methyl ether from Morinda officinalis how. Inhibits osteoclastogenesis through blocking RANKL-induced NF-kappaB pathway. Biochem Biophys Res Commun. 2018;506(4):927–931.
  • Sung B, Oyajobi B, Aggarwal BB. Plumbagin inhibits osteoclastogenesis and reduces human breast cancer-induced osteolytic bone metastasis in mice through suppression of RANKL signaling. Mol Cancer Ther. 2012;11(2):350–359.
  • Qiao H, Cui Z, Yang S, et al. Targeting osteocytes to attenuate early breast cancer bone metastasis by theranostic upconversion nanoparticles with responsive plumbagin release. ACS Nano. 2017;11(7):7259–7273.
  • Qiao H, Wang T-y, Yu Z-F, et al. Structural simulation of adenosine phosphate via plumbagin and zoledronic acid competitively targets JNK/ERK to synergistically attenuate osteoclastogenesis in a breast cancer model. Cell Death Dis. 2016;7(2):e2094.
  • Tomomura M, Suzuki R, Shirataki Y, et al. Rhinacanthin C inhibits osteoclast differentiation and bone resorption: roles of TRAF6/TAK1/MAPKs/NF-kappaB/NFATc1 signaling. PLoS One. 2015;10(6):e0130174.
  • Tsukamoto S, Takeuchi T, Kawabata T, et al. Halenaquinone inhibits RANKL-induced osteoclastogenesis. Bioorg Med Chem Lett. 2014;24(22):5315–5317.
  • Reuter S, Prasad S, Phromnoi K, et al. Embelin suppresses osteoclastogenesis induced by receptor activator of NF-kappaB ligand and tumor cells in vitro through inhibition of the NF-kappaB cell signaling pathway. Mol Cancer Res. 2010;8(10):1425–1436.
  • Hung T-Y, Chen T-L, Liao M-H, et al. Drynaria fortunei J. Sm. promotes osteoblast maturation by inducing differentiation-related gene expression and protecting against oxidative stress-induced apoptotic insults. J Ethnopharmacol. 2010;131(1):70–77.
  • Thummuri D, Jeengar MK, Shrivastava S, et al. Thymoquinone prevents RANKL-induced osteoclastogenesis activation and osteolysis in an in vivo model of inflammation by suppressing NF-KB and MAPK signalling. Pharmacol Res. 2015;99:63–73.
  • Baek JM, Kim J-Y, Jung Y, et al. Mollugin from Rubea cordifolia suppresses receptor activator of nuclear factor-kappaB ligand-induced osteoclastogenesis and bone resorbing activity in vitro and prevents lipopolysaccharide-induced bone loss in vivo. Phytomedicine. 2015;22(1):27–35.
  • Cheng B, Li J, Du J, et al. Ginsenoside Rb1 inhibits osteoclastogenesis by modulating NF-kappaB and MAPKs pathways. Food Chem Toxicol. 2012;50(5):1610–1615.
  • He L, Lee J, Jang JH, et al. Ginsenoside Rh2 inhibits osteoclastogenesis through down-regulation of NF-kappaB, NFATc1 and c-Fos. Bone. 2012;50(6):1207–1213.
  • Siddiqi MH, Siddiqi MZ, Kang S, et al. Inhibition of osteoclast differentiation by ginsenoside Rg3 in RAW264.7 cells via RANKL, JNK and p38 MAPK pathways through a modulation of cathepsin K: an in silico and in vitro study. Phytother Res. 2015;29(9):1286–1294.
  • Park C-M, Kim H-M, Kim DH, et al. Ginsenoside re inhibits osteoclast differentiation in mouse bone marrow-derived macrophages and zebrafish scale model. Mol Cells. 2016;39(12):855–861.
  • Zhou C, Liu W, He W, et al. Saikosaponin a inhibits RANKL-induced osteoclastogenesis by suppressing NF-kappaB and MAPK pathways. Int Immunopharmacol. 2015;25(1):49–54.
  • Qu X, Zhai Z, Liu X, et al. Dioscin inhibits osteoclast differentiation and bone resorption though down-regulating the Akt signaling Cascades. Biochem Biophys Res Commun. 2014;443(2):658–665.
  • Cai B, Zhang Y, Wang Z, et al. Therapeutic potential of diosgenin and its major derivatives against neurological diseases: recent advances. Oxid Med Cell Longev. 2020;2020:1–16.
  • Qiu SX, Dan C, Ding L-S, et al. A triterpene glycoside from black cohosh that inhibits osteoclastogenesis by modulating RANKL and TNFalpha signaling pathways. Chem Biol. 2007;14(7):860–869.
  • Lee S-Y, Lee K-S, Yi SH, et al. Acteoside suppresses RANKL-mediated osteoclastogenesis by inhibiting c-Fos induction and NF-kappaB pathway and attenuating ROS production. PLoS One. 2013;8(12):e80873.
  • Kim J-Y, Park S-H, Baek JM, et al. Harpagoside inhibits RANKL-induced osteoclastogenesis via Syk-Btk-PLCgamma2-Ca(2+) signaling pathway and prevents inflammation-mediated bone loss. J Nat Prod. 2015;78(9):2167–2174.
  • Nie S, Xu J, Zhang C, et al. Salicortin inhibits osteoclast differentiation and bone resorption by down-regulating JNK and NF-kappaB/NFATc1 signaling pathways. Biochem Biophys Res Commun. 2016;470(1):61–67.
  • Zhou F, Shen Y, Liu B, et al. Gastrodin inhibits osteoclastogenesis via down-regulating the NFATc1 signaling pathway and stimulates osseointegration in vitro. Biochem Biophys Res Commun. 2017;484(4):820–826.
  • Huang Q, Shi J, Gao B, et al. Gastrodin: an ancient Chinese herbal medicine as a source for anti-osteoporosis agents via reducing reactive oxygen species. Bone. 2015;73:132–144.
  • Ha J, Choi H-S, Lee Y, et al. Caffeic acid phenethyl ester inhibits osteoclastogenesis by suppressing NF kappaB and downregulating NFATc1 and c-Fos. Int Immunopharmacol. 2009;9(6):774–780.
  • Wu X, Li Z, Yang Z, et al. Caffeic acid 3,4-dihydroxy-phenethyl ester suppresses receptor activator of NF-kappaB ligand-induced osteoclastogenesis and prevents ovariectomy-induced bone loss through inhibition of mitogen-activated protein kinase/activator protein 1 and Ca2+-nuclear factor of activated T-cells cytoplasmic 1 signaling pathways. J Bone Miner Res. 2012;27(6):1298–1308.
  • Lee J-H, Jin H, Shim H-E, et al. Epigallocatechin-3-gallate inhibits osteoclastogenesis by down-regulating c-Fos expression and suppressing the nuclear factor-kappaB signal. Mol Pharmacol. 2010;77(1):17–25.
  • Chen ST, Kang L, Wang CZ, et al. Epigallocatechin-3-gallate decreases osteoclastogenesis via modulation of RANKL and osteoprotegrin. Molecules. 2019;24(1):156.
  • Oka Y, Iwai S, Amano H, et al. Tea polyphenols inhibit rat osteoclast formation and differentiation. J Pharmacol Sci. 2012;118(1):55–64.
  • Hu X, Ping Z, Gan M, et al. Theaflavin-3,3′-digallate represses osteoclastogenesis and prevents wear debris-induced osteolysis via suppression of ERK pathway. Acta Biomater. 2017;48:479–488.
  • Wang W, Zhang L-M, Guo C, et al. Resveratrol promotes osteoblastic differentiation in a rat model of postmenopausal osteoporosis by regulating autophagy. Nutr Metab. 2020;17(1):29.
  • Boissy P, Andersen TL, Abdallah BM, et al. Resveratrol inhibits myeloma cell growth, prevents osteoclast formation, and promotes osteoblast differentiation. Cancer Res. 2005;65(21):9943–9952.
  • Park EK, Kim MS, Lee SH, et al. Furosin, an ellagitannin, suppresses RANKL-induced osteoclast differentiation and function through inhibition of MAP kinase activation and actin ring formation. Biochem Biophys Res Commun. 2004;325(4):1472–1480.
  • Leotoing L, et al. The polyphenol fisetin protects bone by repressing NF-kappaB and MKP-1-dependent signaling pathways in osteoclasts. PLoS One. 2013;8(7):e68388.
  • Kwak SC, Lee C, Kim J-Y, et al. Chlorogenic acid inhibits osteoclast differentiation and bone resorption by down-regulation of receptor activator of nuclear factor kappa-B ligand-induced nuclear factor of activated T cells c1 expression. Biol Pharm Bull. 2013;36(11):1779–1786.
  • Mo H, Zhang N, Li H, et al. Beneficial effects of Cuscuta chinensis extract on glucocorticoid-induced osteoporosis through modulation of RANKL/OPG signals. Braz J Med Biol Res. 2019;52(12):e8754.
  • Rantlha M, Sagar T, Kruger MC, et al. Ellagic acid inhibits RANKL-induced osteoclast differentiation by suppressing the p38 MAP kinase pathway. Arch Pharm Res. 2017;40(1):79–87.
  • Wardhana AS, et al. Role of hydroxyapatite and ellagic acid in the osteogenesis. Eur J Dent. 2021;15(1):8–12.
  • Goto T, Hagiwara K, Shirai N, et al. Apigenin inhibits osteoblastogenesis and osteoclastogenesis and prevents bone loss in ovariectomized mice. Cytotechnology. 2015;67(2):357–365.
  • Mukai N, Akahori T, Komaki M, et al. A comparison of the tube forming potentials of early and late endothelial progenitor cells. Exp Cell Res. 2008;314(3):430–440.
  • Han SY, Kim YK. Berberine suppresses RANKL-induced osteoclast differentiation by inhibiting c-Fos and NFATc1 expression. Am J Chin Med. 2019;47(2):439–455.
  • Sujitha S, Rasool M. Berberine coated mannosylated liposomes curtail RANKL stimulated osteoclastogenesis through the modulation of GSK3beta pathway via upregulating miR-23a. Int Immunopharmacol. 2019;74:105703.
  • Yuan F-L, Xu R-S, Jiang D-L, et al. Leonurine hydrochloride inhibits osteoclastogenesis and prevents osteoporosis associated with estrogen deficiency by inhibiting the NF-kappaB and PI3K/Akt signaling pathways. Bone. 2015;75:128–137.
  • Yonezawa T, Hasegawa S-I, Asai M, et al. Harmine, a β-carboline alkaloid, inhibits osteoclast differentiation and bone resorption in vitro and in vivo. Eur J Pharmacol. 2011;650(2–3):511–518.
  • Li H, Zhai Z, Liu G, et al. Sanguinarine inhibits osteoclast formation and bone resorption via suppressing RANKL-induced activation of NF-kappaB and ERK signaling pathways. Biochem Biophys Res Commun. 2013;430(3):951–956.
  • Lee J-W, Iwahashi A, Hasegawa S-I, et al. Coptisine inhibits RANKL-induced NF-kappaB phosphorylation in osteoclast precursors and suppresses function through the regulation of RANKL and OPG gene expression in osteoblastic cells. J Nat Med. 2012;66(1):8–16.
  • Li X, He L, Hu Y, et al. Sinomenine suppresses osteoclast formation and Mycobacterium tuberculosis H37Ra-induced bone loss by modulating RANKL signaling pathways. PLoS One. 2013;8(9):e74274.
  • Zhou B, Lu X, Tang Z, et al. Influence of sinomenine upon mesenchymal stem cells in osteoclastogenesis. Biomed Pharmacother. 2017;90:835–841.
  • Xin Z, Jin C, Chao L, et al. A matrine derivative M54 suppresses osteoclastogenesis and prevents ovariectomy-induced bone loss by targeting ribosomal protein S5. Front Pharmacol. 2018;9:22.
  • Yeon J-T, Kim K-J, Choi S-W, et al. Anti-osteoclastogenic activity of praeruptorin a via inhibition of p38/Akt-c-Fos-NFATc1 signaling and PLCgamma-independent Ca2+ oscillation. PLoS One. 2014;9(2):e88974.
  • Yeon J-T, Choi S-W, Ryu BJ, et al. Praeruptorin a inhibits in vitro migration of preosteoclasts and in vivo bone erosion, possibly due to its potential to target calmodulin. J Nat Prod. 2015;78(4):776–782.
  • Baek JM, Park S-H, Cheon Y-H, et al. Esculetin attenuates receptor activator of nuclear factor kappa-B ligand-mediated osteoclast differentiation through c-Fos/nuclear factor of activated T-cells c1 signaling pathway. Biochem Biophys Res Commun. 2015;461(2):334–341.
  • Kim K-J, Yeon J-T, Choi S-W, et al. Decursin inhibits osteoclastogenesis by downregulating NFATc1 and blocking fusion of pre-osteoclasts. Bone. 2015;81:208–216.
  • Wang X, Zheng T, Kang J-H, et al. Decursin from angelica gigas suppresses RANKL-induced osteoclast formation and bone loss. Eur J Pharmacol. 2016;774:34–42.
  • Hsieh C-J, Kuo P-L, Hou M-F, et al. Wedelolactone inhibits breast cancer-induced osteoclastogenesis by decreasing Akt/mTOR signaling. Int J Oncol. 2015;46(2):555–562.
  • Zheng M, Ge Y, Li H, et al. Bergapten prevents lipopolysaccharide mediated osteoclast formation, bone resorption and osteoclast survival. Int Orthop. 2014;38(3):627–634.
  • He Y, Zhang Q, Shen Y, et al. Schisantherin a suppresses osteoclast formation and wear particle-induced osteolysis via modulating RANKL signaling pathways. Biochem Biophys Res Commun. 2014;449(3):344–350.
  • Kim A-R, Kim HS, Lee JM, et al. Arctigenin suppresses receptor activator of nuclear factor kappaB ligand (RANKL)-mediated osteoclast differentiation in bone marrow-derived macrophages. Eur J Pharmacol. 2012;682(1–3):29–36.
  • Wei G, Liang T, Wei C, et al. Arctigenin inhibits RANKL-induced osteoclastogenesis and hydroxyapatite resorption in vitro and prevents titanium particle-induced bone loss in vivo. J Cell Biochem. 2019;120(4):5367–5376.
  • Han K-Y, Yang D, Chang E-J, et al. Inhibition of osteoclast differentiation and bone resorption by sauchinone. Biochem Pharmacol. 2007;74(6):911–923.
  • Kim H-J, Hong JM, Yoon H-J, et al. Inhibitory effects of obovatol on osteoclast differentiation and bone resorption. Eur J Pharmacol. 2014;723:473–480.
  • Kim SN, Kim MH, Kim YS, et al. Inhibitory effect of (−)-saucerneol on osteoclast differentiation and bone pit formation. Phytother Res. 2009;23(2):185–191.
  • Jun AY, Kim H-J, Park K-K, et al. Tetrahydrofurofuran-type lignans inhibit breast cancer-mediated bone destruction by blocking the vicious cycle between cancer cells, osteoblasts and osteoclasts. Invest New Drugs. 2014;32(1):1–13.
  • Wanachewin O, Pothacharoen P, Kongtawelert P, et al. Inhibitory effects of sesamin on human osteoclastogenesis. Arch Pharm Res. 2017;40(10):1186–1196.
  • Egusa H, Doi M, Saeki M, et al. The small molecule harmine regulates NFATc1 and Id2 expression in osteoclast progenitor cells. Bone. 2011;49(2):264–274.
  • Kimira Y, Taniuchi Y, Nakatani S, et al. Citrus limonoid nomilin inhibits osteoclastogenesis in vitro by suppression of NFATc1 and MAPK signaling pathways. Phytomedicine. 2015;22(12):1120–1124.
  • Wisutsitthiwong C, Buranaruk C, Pudhom K, et al. The plant limonoid 7-oxo-deacetoxygedunin inhibits RANKL-induced osteoclastogenesis by suppressing activation of the NF-kappaB and MAPK pathways. Biochem Biophys Res Commun. 2011;415(2):361–366.
  • Shim KS, Lee B, Ma JY. Water extract of rumex crispus prevents bone loss by inhibiting osteoclastogenesis and inducing osteoblast mineralization. BMC Complement Altern Med. 2017;17(1):483.
  • Zhai Y, Li Y, Wang Y, et al. Psoralidin, a prenylated coumestan, as a novel anti-osteoporosis candidate to enhance bone formation of osteoblasts and decrease bone resorption of osteoclasts. Eur J Pharmacol. 2017;801:62–71.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.