207
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Formulation development of tocopherol polyethylene glycol nanoengineered polyamidoamine dendrimer for neuroprotection and treatment of Alzheimer disease

, , , ORCID Icon, , ORCID Icon & ORCID Icon show all
Pages 777-791 | Received 02 Jan 2022, Accepted 30 Mar 2022, Published online: 18 Apr 2022

References

  • Kosik KS. Alzheimer’s disease: a cell biological perspective. Science. 1992;256(5058):780–783.
  • Lee SJC, Nam E, Lee HJ, et al. Towards an understanding of amyloid-β oligomers: characterization, toxicity mechanisms, and inhibitors. Chem Soc Rev. 2017;46(2):310–323.
  • Yamin G, Ono K, Inayathullah M, et al. Amyloid beta-protein assembly as a therapeutic target of Alzheimer’s disease. Curr Pharm Des. 2008;14(30):3231–3246.
  • Michaelis ML. Drugs targeting Alzheimer’s disease: some things old and some things new. J Pharmacol Exp Ther. 2003;304(3):897–904.
  • Hritcu L, Noumedem JA, Cioanca O, et al. Methanolic extract of piper nigrum fruits improves memory impairment by decreasing brain oxidative stress in amyloid beta(1-42) rat model of Alzheimer’s disease. Cell Mol Neurobiol. 2014;34(3):437–449.
  • Wang C, Cai Z, Wang W, et al. Piperine attenuates cognitive impairment in an experimental mouse model of sporadic Alzheimer’s disease. J Nutr Biochem. 2019;70:147–155.
  • Chonpathompikunlert P, Yoshitomi T, Han J, et al. The use of nitroxide radical-containing nanoparticles coupled with piperine to protect neuroblastoma SH-SY5Y cells from Aβ-induced oxidative stress. Biomaterials. 2011;32(33):8605–8612.
  • Elnaggar YSR, Etman SM, Abdelmonsif DA, et al. Novel piperine-loaded tween-integrated monoolein cubosomes as brain-targeted oral nanomedicine in Alzheimer’s disease: pharmaceutical, biological, and toxicological studies. Int J Nanomed. 2015;10:5459–5473.
  • Shukla R, Singh A, Handa M, et al. Nanotechnological approaches for targeting amyloid-β aggregation with potential for neurodegenerative disease therapy and diagnosis. Drug Discov Today [Internet]. 2021 Apr 20 [cited 2021 May 13]; Available from: https://linkinghub.elsevier.com/retrieve/pii/S1359644621001987
  • Xu L, Zhang H, Wu Y. Dendrimer advances for the central nervous system delivery of therapeutics. ACS Chem Neurosci. 2014;5(1):2–13.
  • Kesharwani P, Jain K, Jain NK. Dendrimer as nanocarrier for drug delivery. Prog Polym Sci. 2014;39(2):268–307.
  • Kesharwani P, Gajbhiye V, Jain NK. A review of nanocarriers for the delivery of small interfering RNA. Biomaterials. 2012;33(29):7138–7150.
  • Kesharwani P, Iyer AK. Recent advances in dendrimer-based nanovectors for tumor-targeted drug and gene delivery. Drug Discov Today. 2015;20(5):536–547.
  • Singh S, Singh G, Sehrawat S, et al. Conclusion and future considerations of dendrimers. In: Dendrimer-based nanotherapeutics [Internet]. Cambridge: Academic Press; 2021 [cited 2021 May 14]. p. 449–458. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780128212509000056
  • Biddlestone-Thorpe L, Marchi N, Guo K, et al. Nanomaterial-mediated CNS delivery of diagnostic and therapeutic agents. Adv Drug Deliv Rev. 2012;64(7):605–613.
  • Kesharwani P, Banerjee S, Gupta U, et al. PAMAM dendrimers as promising nanocarriers for RNAi therapeutics. Mater Today. 2015;18(10):565–572.
  • Kesharwani P, Tekade RK, Gajbhiye V, et al. Cancer targeting potential of some ligand-anchored poly(propylene imine) dendrimers: a comparison. Nanomedicine. 2011;7(3):295–304.
  • Kesharwani P, Tekade RK, Jain NK. Generation dependent cancer targeting potential of poly(propyleneimine) dendrimer. Biomaterials. 2014;35(21):5539–5548.
  • Kesharwani P, Choudhury H, Meher JG, et al. Dendrimer-entrapped gold nanoparticles as promising nanocarriers for anticancer therapeutics and imaging. Prog Mater Sci. 2019;103:484–508.
  • Sheikh A, Md S, Kesharwani P. RGD engineered dendrimer nanotherapeutic as an emerging targeted approach in cancer therapy. J Control Release. 2021;340:221–242.
  • Sheikh A, Kesharwani P. An insight into aptamer engineered dendrimer for cancer therapy. Eur Polym J [Internet]. 2021;159:110746.
  • Singh V, Kesharwani P. Dendrimer as a promising nanocarrier for the delivery of doxorubicin as an anticancer therapeutics [Internet]. 2021;32:1–29.
  • Singh V, Sahebkar A, Kesharwani P. Poly (propylene imine) dendrimer as an emerging polymeric nanocarrier for anticancer drug and gene delivery. Eur Polym J [Internet]. 2021;158:110683.
  • Surekha B, Kommana NS, Dubey SK, et al. PAMAM dendrimer as a talented multifunctional biomimetic nanocarrier for cancer diagnosis and therapy. Colloids Surf B Biointerfaces. 2021;204:111837.
  • Klajnert B, Cortijo-Arellano M, Cladera J, et al. Influence of dendrimer's structure on its activity against amyloid fibril formation. Biochem Biophys Res Commun. 2006;345(1):21–28.
  • Inoue M, Ueda M, Higashi T, et al. Therapeutic potential of polyamidoamine dendrimer for amyloidogenic transthyretin amyloidosis. ACS Chem Neurosci. 2019;10(5):2584–2590.
  • He H, Li Y, Jia X-R, et al. PEGylated poly(amidoamine) dendrimer-based dual-targeting carrier for treating brain tumors. Biomaterials [Internet]. 2011;32(2):478–487.
  • Sun H, Liu J, Li S, et al. Reactive amphiphilic conjugated polymers for inhibiting amyloid β assembly. Angew Chem Int Ed Engl. 2019;58(18):5988–5993.
  • Gurzov EN, Wang B, Pilkington EH, et al. Inhibition of hIAPP amyloid aggregation and pancreatic β-cell toxicity by OH-terminated PAMAM dendrimer. Small. 2016;12(12):1615–1626.
  • Guo Y, Luo J, Tan S, et al. The applications of vitamin E TPGS in drug delivery. Eur J Pharm Sci. 2013;49(2):175–186.
  • Guo Y, Chu M, Tan S, et al. Chitosan-g-TPGS nanoparticles for anticancer drug delivery and overcoming multidrug resistance. Mol Pharm. 2014;11(1):59–70.
  • Askarian S, Abnous K, Ayatollahi S, Farzad SA, et al. PAMAM-pullulan conjugates as targeted gene carriers for liver cell. Carbohydr Polym. 2017;157:929–937.
  • Zhang M, Jing S, Zhang J, et al. Intracellular release of PluronicL64 unimers into MCF-7/ADR cells to overcome multidrug resistance by surface-modified PAMAM. J Mater Chem B. 2017;5(21):3970–3981.
  • Pande S, Crooks RM. Analysis of poly(amidoamine) dendrimer structure by UV-vis spectroscopy. Langmuir. 2011;27(15):9609–9613.
  • He X, Ma N. An overview of recent advances in quantum dots for biomedical applications. Colloids Surf B Biointerfaces. 2014;124:118–131.
  • Singh A, Mallika TN, Gorain B, et al. Quantum dot: Heralding a brighter future in neurodegenerative disorders. J Drug Deliv Sci Technol [Internet]. 2021;65:102700.
  • Mody N, Tekade RK, Mehra NK, et al. Dendrimer, liposomes, carbon nanotubes and PLGA nanoparticles: one platform assessment of drug delivery potential. AAPS PharmSciTech [Internet]. 2014;15(2):388–399.
  • Kulhari H, Pooja D, Prajapati SK, et al. Performance evaluation of PAMAM dendrimer based simvastatin formulations. Int J Pharm. 2011;405(1-2):203–209.
  • Chauhan AS, Sridevi S, Chalasani KB, et al. Dendrimer-mediated transdermal delivery: enhanced bioavailability of indomethacin. J Control Release. 2003;90(3):335–343.
  • Carp OE, Moraru A, Pinteala M, et al. Electrochemical behaviour of piperine. Comparison with control antioxidants. Food Chem. 2021;339:128110.
  • Yin F, Liu J, Ji X, et al. Silibinin: a novel inhibitor of Aβ aggregation. Neurochem Int. 2011;58(3):399–403.
  • Liao Y-H, Chang Y-J, Yoshiike Y, et al. Negatively charged gold nanoparticles inhibit Alzheimer's amyloid-β fibrillization, induce fibril dissociation, and mitigate neurotoxicity. Small. 2012;8(23):3631–3639.
  • Barrow CJ, Yasuda A, Kenny PT, et al. Solution conformations and aggregational properties of synthetic amyloid beta-peptides of Alzheimer’s disease. Analysis of circular dichroism spectra. J Mol Biol. 1992;225(4):1075–1093.
  • Doggui S, Sahni JK, Arseneault M, et al. Neuronal uptake and neuroprotective effect of curcumin-loaded PLGA nanoparticles on the human SK-N-SH cell line. J Alzheimers Dis. 2012;30(2):377–392.
  • Hua Y, Zhou N, Zhang J, et al. Isatin inhibits the invasion and metastasis of SH-SY5Y neuroblastoma cells in vitro and in vivo. Int J Oncol. 2021;58(1):122–132.
  • Kanat ÖN, Selmanoğlu G. Neurotoxic effect of fipronil in neuroblastoma SH-SY5Y cell line. Neurotox Res. 2020;37(1):30–40.
  • Santos JL, Oliveira H, Pandita D, et al. Functionalization of poly(amidoamine) dendrimers with hydrophobic chains for improved gene delivery in mesenchymal stem cells. J Control Release. 2010;144(1):55–64.
  • Khare V, Sakarchi WA, Gupta PN, et al. Synthesis and characterization of TPGS–gemcitabine prodrug micelles for pancreatic cancer therapy. RSC Adv. 2016;6(65):60126–60137.
  • Takeuchi Y, Ida T, Kimura K. Colloidal stability of gold nanoparticles in 2-propanol under laser irradiation. J Phys Chem B. 1997;101(8):1322–1327.
  • Won Y-W, Yoon S-M, Sonn CH, et al. Nano self-assembly of recombinant human gelatin conjugated with α-tocopheryl succinate for Hsp90 inhibitor, 17-AAG, delivery. ACS Nano. 2011;5(5):3839–3848.
  • Pi R, Mao X, Chao X, et al. Tacrine-6-ferulic acid, a novel multifunctional dimer, inhibits amyloid-β-mediated Alzheimer’s disease-associated pathogenesis in vitro and in vivo . PLoS One. 2012;7(2):e31921.
  • Li P-J, Jin T, Luo D-H, et al. Effect of prolonged radiotherapy treatment time on survival outcomes after intensity-modulated radiation therapy in nasopharyngeal carcinoma. PLoS One. 2015;10(10):e0141332.
  • Adamcik J, Mezzenga R. Study of amyloid fibrils via atomic force microscopy. Curr Opin Colloid Interface Sci. 2012;17(6):369–376.
  • Mi Y, Zhao J, Feng S-S. Vitamin E TPGS prodrug micelles for hydrophilic drug delivery with neuroprotective effects. Int J Pharm. 2012;438(1-2):98–106.
  • Fang X, Yousaf M, Huang Q, et al. Dual effect of PEG-PE micelle over the oligomerization and fibrillation of human islet amyloid polypeptide. Sci Rep. 2018;8(1):4463.
  • Davis BM, Tian K, Pahlitzsch M, et al. Topical coenzyme Q10 demonstrates mitochondrial-mediated neuroprotection in a rodent model of ocular hypertension. Mitochondrion. 2017;36:114–123.
  • Zhang J, Zhou X, Yu Q, et al. Epigallocatechin-3-gallate (EGCG)-stabilized selenium nanoparticles coated with tet-1 peptide to reduce amyloid-β aggregation and cytotoxicity. ACS Appl Mater Interfaces. 2014;6(11):8475–8487.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.