113
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Erythrocyte-derived liposomes for the treatment of inflammatory diseases

, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 873-883 | Received 01 Dec 2021, Accepted 07 Apr 2022, Published online: 25 Apr 2022

References

  • Straub RH, Schradin C. Chronic inflammatory systemic diseases – an evolutionary trade-off between acutely beneficial but chronically harmful programs. Evol Med Public Heal. 2016;2016:37–51.
  • World Health Organization. Noncommunicable diseases country profiles 2018. Geneva: World Health Organization; 2018.
  • Vandewalle J, Luypaert A, De Bosscher K, et al. Therapeutic mechanisms of glucocorticoids. Trends Endocrinol Metab. 2018;29(1):42–54.
  • Baigent C, Bhala N, Emberson J, et al. Vascular and upper gastrointestinal effects of non-steroidal anti-inflammatory drugs: meta-analyses of individual participant data from randomised trials. Lancet. 2013;382:P769–779.
  • McGettigan P, Henry D. Use of non-steroidal anti-inflammatory drugs that elevate cardiovascular risk: an examination of sales and essential medicines lists in low-, middle-, and high-income countries. PLoS Med. 2013;10(2):e1001388.
  • Cannella AC. Traditional DMARDs: Methotrexate, Leflunomide, Sulfasalazine, Hydroxychloroquine, and Combination Therapies. Kelley Firestein’s Textb Rheumatol [Internet]. 10th ed. Philadelphia: Elsevier. 2017. p. 958–982.e7. Available from: https://www.sciencedirect.com/science/article/pii/B9780323316965000619.
  • Padjen I. Drugs used in rheumatic disease. Handbook of Systemic Autoimmune Diseases. Amsterdam (The Netherlands): Elsevier; 2018. p. 39–76.
  • Gan TJ. Diclofenac: an update on its mechanism of action and safety profile. Curr Med Res Opin. 2010;26(7):1715–1731.
  • Ferreira H, Lúcio M, Lima JLFC, et al. Interaction of clonixin with EPC liposomes used as membrane models. J Pharm Sci. 2005;94(6):1277–1287.
  • Ferreira H, Lúcio M, Lima JLFC, et al. Effects of diclofenac on EPC liposome membrane properties. Anal Bioanal Chem. 2005;382(5):1256–1264.
  • Bozzuto G, Molinari A. Liposomes as nanomedical devices. Int J Nanomedicine. 2015;10:975–999.
  • Pattni BS, Chupin VV, Torchilin VP. New developments in liposomal drug delivery. Chem Rev. 2015;115(19):10938–10966.
  • Bardania H, Tarvirdipour S, Dorkoosh F. Liposome-targeted delivery for highly potent drugs. Artif Cells Nanomed Biotechnol. 2017;45(8):1478–1489. Available from.
  • Gardikis K, Tsimplouli C, Dimas K, et al. New chimeric advanced drug delivery nano systems (chi-aDDnSs) as doxorubicin carriers. Int J Pharm. 2010;402(1–2):231–237.
  • Silverman JA, Deitcher SR. Marqibo® (vincristine sulfate liposome injection) improves the pharmacokinetics and pharmacodynamics of vincristine. Cancer Chemother Pharmacol. 2013;71(3):555–564.
  • Usonis V, Bakasénas V, Valentelis R, et al. Antibody titres after primary and booster vaccination of infants and young children with a virosomal hepatitis a vaccine (epaxal®). Vaccine. 2003;21(31):4588–4592.
  • Dehaini D, Wei X, Fang RH, et al. Erythrocyte-Platelet hybrid membrane coating for enhanced nanoparticle functionalization. Adv. Mater. 2017;29(16):1606209. Available from: http://doi.wiley.com10.1002/adma.201606209.
  • Jiang Q, Liu Y, Guo R, et al. Erythrocyte-cancer hybrid membrane-camouflaged melanin nanoparticles for enhancing photothermal therapy efficacy in tumors. Biomaterials. 2019;192:292–308.
  • Bryk AH, Wiśniewski JR. Quantitative analysis of human red blood cell proteome. J Proteome Res. 2017;16(8):2752–2761. Available fromhttps://pubs.acs.org/10.1021/acs.jproteome.7b00025.
  • Fliervoet LAL, Mastrobattista E. Drug delivery with living cells. Adv Drug Deliv Rev. 2016;106(Pt A):63–72. Available from: 10.1016/j.addr.2016.04.021.
  • Magnani M, Rossi L. Approaches to erythrocyte-mediated drug delivery. Expert Opin Drug Deliv. 2014;11(5):677–687.
  • Calder PC. n-3 polyunsaturated fatty acids, inflammation, and inflammatory diseases. Am J Clin Nutr. 2006;83(6 Suppl):1505S–1519S.
  • Calder PC. n-3 fatty acids, inflammation, and immunity-relevance to postsurgical and critically ill patients. Lipids. 2004;39(12):1147–1161.
  • Schober ME, Requena DF, Casper TC, et al. Docosahexaenoic acid decreased neuroinflammation in rat pups after controlled cortical impact. Exp Neurol. 2019;320:112971.
  • Nangare KA, Powar SD, Payghan SA. Nanoerythrosomes: Engineered erythrocytes as a novel carrier for the targeted drug delivery. Asian J Pharm. 2016;10:S223–S233.
  • Dong X, Niu Y, Ding Y, et al. Formulation and drug loading features of Nano-Erythrocytes. Nanoscale Res Lett. 2017;12(1):202. Available from: https://pubmed.ncbi.nlm.nih.gov/28314369.
  • Hu CMJ, Zhang L, Aryal S, et al. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc Natl Acad Sci U S A. 2011;108(27):10980–10985.
  • Han X, Shen S, Fan Q, et al. Red blood cell-derived nanoerythrosome for antigen delivery with enhanced cancer immunotherapy. Sci Adv. 2019;5(10):eaaw6870.
  • Ci X, Zhou J, Lv H, et al. Betulin exhibits anti-inflammatory activity in LPS-stimulated macrophages and endotoxin-shocked mice through an AMPK/AKT/Nrf2-dependent mechanism. Cell Death Dis. 2017;8(5):e2798. Available from:.
  • Lima AC, Amorim D, Laranjeira I, et al. Modulating inflammation through the neutralization of interleukin-6 and tumor necrosis factor-α by biofunctionalized nanoparticles. J Control Release. 2021;331:491–502. Available from: https://www.sciencedirect.com/science/article/pii/S0168365921000481.
  • Lima AC, Cunha C, Carvalho A, et al. Interleukin-6 neutralization by antibodies immobilized at the surface of polymeric nanoparticles as a therapeutic strategy for arthritic diseases. ACS Appl Mater Interfaces. 2018;10(16):13839–13850. Available from: https://pubs.acs.org10.1021/acsami.8b01432.
  • Medzhitov R. Origin and physiological roles of inflammation. Nature. 2008;454(7203):428–435.
  • Chen L, Deng H, Cui H, et al. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. 2018;9(6):7204–7218.
  • Kumar V, Abbas AK, Aster JC, editors. Chapter 3. Inflammation and repair. Robbins basic pathol. 10th ed. Philadelphia: Elsevier; 2018. p. 57–96.
  • Rose HG, Oklander M, Rose G, et al. Improved procedure for the extraction of lipids from human erythrocytes. J Lipid Res. 1965;6:428–431.
  • Guedes M, Costa-Pinto AR, Gonçalves VMF, et al. Sardine roe as a source of lipids to produce liposomes. ACS Biomater Sci Eng. 2020;6(2):1017–1029. Available from: 10.1021/acsbiomaterials.9b01462.
  • Monteiro N, Martins A, Ribeiro D, et al. On the use of dexamethasone-loaded liposomes to induce the osteogenic differentiation of human mesenchymal stem cells. J Tissue Eng Regen Med. 2015;9(9):1056–1066. Available from:.
  • Lima AC, Campos CF, Cunha C, et al. Biofunctionalized liposomes to monitor rheumatoid arthritis regression stimulated by interleukin-23 neutralization. Adv Healthcare Materials. 2021;10(2):2001570. Available from:.
  • Bartlett GR. Phosphorus assay in column chromatography. J Biol Chem. 1959;234(3):466–468.
  • Sarfraz M, Afzal A, Yang T, et al. Development of dual drug loaded nanosized liposomal formulation by a reengineered ethanolic injection method and its pre-clinical pharmacokinetic studies. Pharmaceutics [Internet]. 2018;10(3):151. Available from: https://pubmed.ncbi.nlm.nih.gov/30200557.
  • Vieira SF, Ferreira H, Neves NM. Antioxidant and anti-Inflammatory activities of cytocompatible salvia officinalis extracts: a comparison between traditional and soxhlet extraction. Antioxidants. 2020;9(11):1157.
  • Lima AC, Reis RL, Ferreira H, et al. Cellular uptake of three different nanoparticles in an inflammatory arthritis scenario versus normal conditions. Mol Pharm. 2021;18(9):3235–3246. Available from:.
  • Cartaxo AL, Costa-Pinto AR, Martins A, et al. Influence of PDLA nanoparticles size on drug release and interaction with cells. J Biomed Mater Res A. 2019;107(3):482–493. Available from:.
  • Treede I, Braun A, Sparla R, et al. Anti-inflammatory effects of phosphatidylcholine. J Biol Chem. 2007;282(37):27155–27164. Available from: http://www.jbc.org/lookup10.1074/jbc.M704408200.
  • Metselaar JM, Storm G. Liposomes in the treatment of inflammatory disorders. Expert Opin Drug Deliv. 2005;2(3):465–476. Available from: http://www.tandfonline.com/doi/full/10.1517/17425247.2.3.465.
  • Smits HH, Grünberg K, Derijk RH, et al. Cytokine release and its modulation by dexamethasone in whole blood following exercise. Clin Exp Immunol. 1998;111(2):463–468. Available from: http://doi.wiley.com/10.1046/j.1365-2249.1998.00482.x.
  • Huebner KD, Shrive NG, Frank CB. Dexamethasone inhibits inflammation and cartilage damage in a new model of post-traumatic osteoarthritis. J Orthop Res. 2014;32(4):566–572.
  • Bulbake U, Doppalapudi S, Kommineni N, et al. Liposomal formulations in clinical use: an updated review. Pharmaceutics. 2017;9(4):12.
  • Siscovick DS, Raghunathan TE, King I, et al. Dietary intake and cell membrane levels of long-chain n-3 polyunsaturated fatty acids and the risk of primary cardiac arrest. JAMA J Am Med Assoc. 1995;274(17):1363–1367.
  • Singer SJ, Nicolson GL. The fluid mosaic model of the structure of cell membranes. Science. 1972;175(4023):720–731.
  • Yawata Y. Cell membrane: The red blood cell as a model. Weinheim (Germany): Wiley‐VCH; 2003. p. 27–46.
  • Pavelka K. A comparison of the therapeutic efficacy of diclofenac in osteoarthritis: a systematic review of randomised controlled trials. Curr Med Res Opin. 2012;28(1):163–178.
  • Crofford LJ. Use of NSAIDs in treating patients with arthritis. Arthritis Res Ther. 2013;15(S3):S2. Available from: https://arthritis-research.biomedcentral.com/articles10.1186/ar4174.
  • Miyatake S, Ichiyama H, Kondo E, et al. Randomized clinical comparisons of diclofenac concentration in the soft tissues and blood plasma between topical and oral applications. Br J Clin Pharmacol. 2009;67(1):125–129.
  • Emami S, Azadmard-Damirchi S, Peighambardoust SH, et al. Liposomes as carrier vehicles for functional compounds in food sector. J Exp Nanosci. 2016;11(9):737–759.
  • Danaei M, Dehghankhold M, Ataei S, et al. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics [Internet]. 2018;10(2):57. Available from: http://www.mdpi.com/1999-4923/10/2/57.
  • Virtanen JA, Cheng KH, Somerharju P. Phospholipid composition of the mammalian red cell membrane can be rationalized by a superlattice model. Proc Natl Acad Sci U S A. 1998;95(9):4964–4969. Available from: http://www.pnas.org/cgi10.1073/pnas.95.9.4964.
  • Smith MC, Crist RM, Clogston JD, et al. Zeta potential: a case study of cationic, anionic, and neutral liposomes. Anal Bioanal Chem. 2017;409(24):5779–5787.
  • Li J, Wang X, Zhang T, et al. A review on phospholipids and their main applications in drug delivery systems. Asian J Pharm Sci. 2015;10(2):81–98.
  • Demetzos C. Differential scanning calorimetry (DSC): a tool to study the thermal behavior of lipid bilayers and liposomal stability. J Liposome Res. 2008;18(3):159–173. Available from: http://www.tandfonline.com10.1080/08982100802310261.
  • Douglas S, Douglas A. Part VIII: Williams Hematology, 9th edition. 2016. p. 1045–1073.
  • Wall R, Ross RP, Fitzgerald GF, et al. Fatty acids from fish: the anti-inflammatory potential of long-chain omega-3 fatty acids. Nutr Rev. 2010;68(5):280–289. Available from: https://academic.oup.com/nutritionreviews/article-lookup10.1111/j.1753-4887.2010.00287.x.
  • Cao J, Schwichtenberg KA, Hanson NQ, et al. Incorporation and clearance of omega-3 fatty acids in erythrocyte membranes and plasma phospholipids. Clin Chem. 2006;52(12):2265–2272.
  • Sigma. L-α-Phosphatidylcholine [Internet]. [cited 2019 Feb 19]. Available from: https://www.sigmaaldrich.com/catalog/product/sigma/p3556?lang=pt&region=PT.
  • Jia M, Deng C, Luo J, et al. A novel dexamethasone-loaded liposome alleviates rheumatoid arthritis in rats. Int J Pharm. 2018;540(1–2):57–64.
  • Lavigne P, Shi Q, Jolicoeur FC, et al. Modulation of IL-1beta, IL-6, TNF-alpha and PGE(2) by pharmacological agents in explants of membranes from failed total hip replacement. Osteoarthr Cartil. 2002;10(11):898–904.
  • Gutiérrez S, Svahn SL, Johansson ME. Effects of omega-3 fatty acids on immune cells. Int J Mol Sci. 2019;20:5028.
  • Liu Y, Chen LY, Sokolowska M, et al. The fish oil ingredient, docosahexaenoic acid, activates cytosolic phospholipase A2 via GPR120 receptor to produce prostaglandin E2 and plays an anti-inflammatory role in macrophages. Immunology. 2014;143(1):81–95.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.