142
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Constructing new acid-activated anticancer peptide by attaching a desirable anionic binding partner peptide

, , , , , , & show all
Pages 973-982 | Received 22 Nov 2021, Accepted 19 Apr 2022, Published online: 02 Jun 2022

References

  • Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2021. CA Cancer J Clin. 2021;71(1):7–33.
  • Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–249.
  • Martínez-Jiménez F, Muiños F, Sentís I, et al. A compendium of mutational cancer driver genes. Nat Rev Cancer. 2020;20(10):555–572.
  • Chen DS, Mellman I. Elements of cancer immunity and the cancer-immune set point. Nature. 2017;541(7637):321–330.
  • Gharwan H, Groninger H. Kinase inhibitors and monoclonal antibodies in oncology: clinical implications. Nat Rev Clin Oncol. 2016;13(4):209–227.
  • Galluzzi L, Humeau J, Buqué A, et al. Immunostimulation with chemotherapy in the era of immune checkpoint inhibitors. Nat Rev Clin Oncol. 2020;17(12):725–741.
  • Minutolo NG, Hollander EE, Powell DJ. The emergence of universal immune receptor T cell therapy for cancer. Front Oncol. 2019;9:176–190.
  • Hadianamrei R, Tomeh MA, Brown S, et al. Rationally designed short cationic α-helical peptides with selective anticancer activity. J Colloid Interface Sci. 2022;607(Pt 1):488–501.
  • Lin LM, Chi JY, Yan YL, et al. Membrane-disruptive peptides/peptidomimetics-based therapeutics: promising systems to combat bacteria and cancer in the drug-resistant era. Acta Pharm Sin B. 2021;11(9):2609–2644.
  • Yang LP, He J, Tao ZC, et al. GSH-responsive poly-resveratrol based nanoparticles for effective drug delivery and reversing multidrug resistance. Drug Deliv. 2022;29(1):229–237.
  • Vyas D, Patel M, Wairkar S. Strategies for active tumor targeting—an update. Eur J Pharmacol. 2022;915:174512–174522.
  • Deng XT, Song QC, Zhang YR, et al. Tumour microenvironment-responsive nanoplatform based on biodegradable liposome-coated hollow MnO2 for synergistically enhanced chemotherapy and photodynamic therapy. J Drug Target. 2022;30(3):334–347.
  • Zorko M, Jones S, Langel Ü. Cell-penetrating peptides in protein mimicry and cancer therapeutics. Adv Drug Deliv Rev. 2022;180:114044–114060.
  • Shim MK, Yang S, Sun IC, et al. Tumor-activated carrier-free prodrug nanoparticles for targeted cancer immunotherapy: preclinical evidence for safe and effective drug delivery. Adv Drug Deliv Rev. 2022;183:114177–114198.
  • Hu MY, Huang L. Strategies targeting tumor immune and stromal microenvironment and their clinical relevance. Adv Drug Deliv Rev. 2022;183:114137–114158.
  • Dutta D, Zhou QH, Mukerabigwi JF, et al. Hypoxia-responsive polyprodrug nanocarriers for near-infrared light-boosted photodynamic chemotherapy. Biomacromolecules. 2021;22(11):4857–4870.
  • Ding MB, Zhang YJ, Li JC, et al. Bioenzyme-based nanomedicines for enhanced cancer therapy. Nano Converg. 2022;9(1):7–26.
  • Zhang YM, Yang LJ, Yang CH, et al. Recent advances of smart acid-responsive gold nanoparticles in tumor therapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2020;12(4):e1619–e1634.
  • Boedtkjer E, Pedersen SF. The acidic tumor microenvironment as a driver of cancer. Annu Rev Physiol. 2020;82:103–126.
  • Dharmaratne NU, Kaplan AR, Glazer PM. Targeting the hypoxic and acidic tumor micro-environment with pH-sensitive peptides. Cells. 2021;10(3):541–554.
  • Svoronos AA, Engelman DM. Pharmacokinetic modeling reveals parameters that govern tumor targeting and delivery by a pH-low insertion peptide (pHLIP). Proc Natl Acad Sci U S A. 2021;118(1):e2016605118–e2016605126.
  • Nam SH, Jang J, Cheon DH, et al. pH-Activatable cell penetrating peptide dimers for potent delivery of anticancer drug to triple-negative breast cancer. J Control Release. 2021;330:898–906.
  • Bayram NN, Ulu GT, Topuzoğulları M, et al. HER2-targeted, degradable core cross-linked micelles for specific and dual pH-sensitive DOX release. Macromol Biosci. 2022;22(1):e2100375–e2100391.
  • Ding GB, Zhu CC, Wang Q, et al. Molecularly engineered tumor acidity-responsive plant toxin gelonin for safe and efficient cancer therapy. Bioact Mater. 2022;18:42–55.
  • Wei TT, Zhang Y, Lei M, et al. Development of oral curcumin based on pH-responsive transmembrane peptide–cyclodextrin derivative nanoparticles for hepatoma. Carbohydr Polym. 2022;277:118892–118901.
  • Chiangjong W, Chutipongtanate S, Hongeng S. Anticancer peptide: physicochemical property, functional aspect and trend in clinical application (review). Int J Oncol. 2020;57(3):678–696.
  • Jafari A, Babajani A, Forooshani RS, et al. Clinical applications and anticancer effects of antimicrobial peptides: from bench to bedside. Front Oncol. 2022;12:819563–819581.
  • Liscano Y, Oñate-Garzón J, Delgado JP. Peptides with dual antimicrobial–anticancer activity: strategies to overcome peptide limitations and rational design of anticancer peptides. Molecules. 2020;25(18):4245–4264.
  • Hadianamrei R, Tomeh MA, Brown S, et al. Correlation between the secondary structure and surface activity of β-sheet forming cationic amphiphilic peptides and their anticancer activity. Colloids Surf B Biointerfaces. 2022;209(Pt 2):112165–112175.
  • Guo FL, Zhang Y, Dong WB, et al. Effect of hydrophobicity on distinct anticancer mechanism of antimicrobial peptide chensinin-1b and its lipoanalog PA-C1b in breast cancer cells. Int J Biochem Cell Biol. 2022;143:106156–106165.
  • Chen XL, Ji SS, Li A, et al. Toggling preassembly with single-site mutation switches the cytotoxic mechanism of cationic amphipathic peptides. J Med Chem. 2020;63(3):1132–1141.
  • Hu CH, Huang YB, Chen YX. Targeted modification of the cationic anticancer peptide HPRP-A1 with iRGD to improve specificity, penetration, and tumor-tissue accumulation. Mol Pharm. 2019;16(2):561–572.
  • Lv SX, Sylvestre M, Song KF, et al. Development of D-melittin polymeric nanoparticles for anti-cancer treatment. Biomaterials. 2021;277:121076–121086.
  • Permpoon U, Khan F, Vadevoo SMP, et al. Inhibition of tumor growth against chemoresistant cholangiocarcinoma by a proapoptotic peptide targeting interleukin-4 receptor. Mol Pharm. 2020;17(11):4077–4088.
  • Wang AQ, Zheng Y, Zhu WX, et al. Melittin-based nano-delivery systems for cancer therapy. Biomolecules. 2022;12(1):118–135.
  • Tanishiki N, Yano Y, Matsuzaki K. Endowment of pH responsivity to anticancer peptides by introducing 2,3-diaminopropionic acid residues. ChemBioChem. 2019;20(16):2109–2117.
  • Chang LL, Bao HX, Yao J, et al. New designed pH-responsive histidine-rich peptides with antitumor activity. J Drug Target. 2021;29(6):651–659.
  • Song JJ, Zhang W, Kai M, et al. Design of an acid-activated antimicrobial peptide for tumor therapy. Mol Pharm. 2013;10(8):2934–2941.
  • Sun CM, Shen WC, Tu JS, et al. Interaction between cell-penetrating peptides and acid-sensitive anionic oligopeptides as a model for the design of targeted drug carriers. Mol Pharm. 2014;11(5):1583–1590.
  • Zaro JL, Fei L, Shen WC. Recombinant peptide constructs for targeted cell penetrating peptide-mediated delivery. J Control Release. 2012;158(3):357–361.
  • Fei L, Yap LP, Conti PS, et al. Tumor targeting of a cell penetrating peptide by fusing with a pH-sensitive histidine–glutamate co-oligopeptide. Biomaterials. 2014;35(13):4082–4087.
  • Jong H, Bonger KM, Löwik DWPM. Activatable cell-penetrating peptides: 15 years of research. RSC Chem Biol. 2020;1(4):192–203.
  • Yu YL, Zu C, He DS, et al. pH-dependent reversibly activatable cell-penetrating peptides improve the antitumor effect of artemisinin-loaded liposomes. J Colloid Interface Sci. 2021;586:391–403.
  • Yin J, Liu DK, Bao LC, et al. Tumor targeting and microenvironment-responsive multifunctional fusion protein for pro-apoptotic peptide delivery. Cancer Lett. 2019;452:38–50.
  • Yang SC, Leong JY, Wang YM, et al. Drug-free neutrally charged polypeptide nanoparticles as anticancer agents. J Control Release. 2022;345:464–474.
  • Zhang TY, Ouyang X, Gou SH, et al. Novel synovial targeting peptide-sinomenine conjugates as a potential strategy for the treatment of rheumatoid arthritis. Int J Pharm. 2022;617:121628–121639.
  • Zhu NY, Zhong C, Liu TQ, et al. Newly designed antimicrobial peptides with potent bioactivity and enhanced cell selectivity prevent and reverse rifampin resistance in gram-negative bacteria. Eur J Pharm Sci. 2021;158:105665–105680.
  • Rodríguez-Álvarez Y, Cabrales-Rico A, Diago-Abreu D, et al. D-amino acid substitutions and dimerization increase the biological activity and stability of an IL-15 antagonist peptide. J Pept Sci. 2021;27(3):e3293–e3305.
  • Ahmed S, Khan H, Fakhri S, et al. Therapeutic potential of marine peptides in cervical and ovarian cancers. Mol Cell Biochem. 2022;477(2):605–619.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.