805
Views
7
CrossRef citations to date
0
Altmetric
Review Articles

ABC transporters in breast cancer: their roles in multidrug resistance and beyond

, ORCID Icon, , , , , ORCID Icon & ORCID Icon show all
Pages 927-947 | Received 19 Jan 2022, Accepted 12 Jun 2022, Published online: 26 Jun 2022

References

  • Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA A Cancer J Clin. 2019;69(1):7–34.
  • Szakács G, Paterson JK, Ludwig JA, et al. Targeting multidrug resistance in cancer. Nat Rev Drug Discov. 2006;5(3):219–234.
  • Bukowski K, Kciuk M, Kontek R. Mechanisms of multidrug resistance in cancer chemotherapy. IJMS. 2020;21(9):3233.
  • Wu Q, Yang Z, Nie Y, et al. Multi-drug resistance in cancer chemotherapeutics: Mechanisms and lab approaches. Cancer Lett. 2014;347(2):159–166.
  • Mohammad HP, Barbash O, Creasy CL. Targeting epigenetic modifications in cancer therapy: erasing the roadmap to cancer. Nat Med. 2019;25(3):403–418.
  • Fok JHL, Ramos-Montoya A, Vazquez-Chantada M, et al. AZD7648 is a potent and selective DNA-PK inhibitor that enhances radiation, chemotherapy and olaparib activity. Nat Commun. 2019;10(1):5065.
  • Li Y, Steppi A, Zhou Y, et al. Tumoral expression of drug and xenobiotic metabolizing enzymes in breast cancer patients of different ethnicities with implications to personalized medicine. Sci Rep. 2017;7(1):4747.
  • Han J, Lim W, You D, et al. Chemoresistance in the human triple-negative breast cancer cell line MDA-MB-231 induced by doxorubicin gradient is associated with epigenetic alterations in histone deacetylase. J Oncol. 2019;2019:1345026.
  • Danø K. Active outward transport of daunomycin in resistant ehrlich ascites tumor cells. Biochim Biophys Acta. 1973;323(3):466–483.
  • Juliano RL, Ling V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim Biophys Acta. 1976;455(1):152–162.
  • Liu X, Pan G, editors. Drug transporters in drug disposition, effects and toxicity. [Internet]. Singapore: Springer Singapore; 2019.
  • Muriithi W, Macharia LW, Heming CP, et al. ABC transporters and the hallmarks of cancer: roles in cancer aggressiveness beyond multidrug resistance. Cancer Biol Med. 2020;17(2):253–269.
  • Fasano T, Zanoni P, Rabacchi C, et al. Novel mutations of ABCA1 transporter in patients with tangier disease and familial HDL deficiency. Mol Genet Metab. 2012;107(3):534–541.
  • Vasiliou V, Vasiliou K, Nebert DW. Human ATP-binding cassette (ABC) transporter family. Hum Genomics. 2009;3(3):281–290.
  • Kawaguchi K, Morita M. ABC transporter subfamily D: distinct differences in behavior between ABCD1–3 and ABCD4 in subcellular localization, function, and human disease. Biomed Res Int. 2016;2016:e6786245.
  • He J, Fortunati E, Liu D-X, et al. Pleiotropic roles of ABC transporters in breast cancer. IJMS. 2021;22(6):3199.
  • Lv J, Fu Z, Shi M, et al. Systematic analysis of gene expression pattern in has-miR-760 overexpressed resistance of the MCF-7 human breast cancer cell to doxorubicin. Biomedicine & Pharmacotherapy. 2015;69:162–169.
  • Madrid-Paredes A, Cañadas-Garre M, Sánchez-Pozo A, et al. ABCB1 gene polymorphisms and response to chemotherapy in breast cancer patients: a meta-analysis. Surg Oncol. 2017;26(4):473–482.
  • Zeliha KP, Dilek O, Ezgi O, et al. Association between ABCB1, ABCG2 carrier protein and COX-2 enzyme gene polymorphisms and breast cancer risk in a Turkish population. Saudi Pharm J. 2020;28(2):215–219.
  • Sun Y-L, Patel A, Kumar P, et al. Role of ABC transporters in cancer chemotherapy. Chin J Cancer. 2012;31(2):51–57.
  • Begicevic R-R, Falasca M. ABC transporters in cancer stem cells: beyond chemoresistance. IJMS. 2017;18(11):2362.
  • Järvinen E, Deng F, Kiander W, et al. The role of uptake and efflux transporters in the disposition of glucuronide and sulfate conjugates. Front Pharmacol. 2021;12:802539.
  • Meier PJ, Stieger B. Bile salt transporters. Annu Rev Physiol. 2002;64:635–661.
  • Tarling EJ, de Aguiar Vallim TQ, Edwards PA. Role of ABC transporters in lipid transport and human disease. Trends Endocrinol Metab. 2013;24(7):342–350.
  • Liesa M, Qiu W, Shirihai OS. Mitochondrial ABC transporters function: the role of ABCB10 (ABC-me) as a novel player in cellular handling of reactive oxygen species. Biochim Biophys Acta. 2012;1823(10):1945–1957.
  • Eggensperger S, Tampé R. The transporter associated with antigen processing: a key player in adaptive immunity. Biol Chem. 2015;396(9–10):1059–1072.
  • Jiang Z-S, Sun Y-Z, Wang S-M, et al. Epithelial-mesenchymal transition: potential regulator of ABC transporters in tumor progression. J Cancer. 2017;8(12):2319–2327.
  • Locher KP. Mechanistic diversity in ATP-binding cassette (ABC) transporters. Nat Struct Mol Biol. 2016;23(6):487–493.
  • Manjula M, Pampa KJ, Kumar SM, et al. Crystal structure of ATP-binding subunit of an ABC transporter from Geobacillus kaustophilus. Biochem Biophys Res Commun. 2015;459(1):113–117.
  • Lee S, Lee H, Bae H, et al. Epigenetic silencing of miR-19a-3p by cold atmospheric plasma contributes to proliferation inhibition of the MCF-7 breast cancer cell. Sci Rep. 2016;6:30005.
  • Chang G, Roth CB. Structure of MsbA from E. coli: a homolog of the multidrug resistance ATP bindine cassette (ABC) transporters. 2001;293(5536):1793–1800.
  • Andreoletti P, Raas Q, Gondcaille C, et al. Predictive structure and topology of peroxisomal ATP-Binding cassette (ABC) transporters. IJMS. 2017;18(7):1593.
  • Li J, Jaimes KF, Aller SG. Refined structures of mouse P-glycoprotein. Protein Sci. 2014;23(1):34–46.
  • Aller SG, Yu J, Ward A, et al. Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Science. 2009;323(5922):1718–1722.
  • Shintre CA, Pike ACW, Li Q, et al. Structures of ABCB10, a human ATP-binding cassette transporter in apo- and nucleotide-bound states. Proc Natl Acad Sci U S A. 2013;110(24):9710–9715.
  • Liu F, Zhang Z, Csanády L, et al. Molecular structure of the human CFTR ion channel. Cell. 2017;169(1):85–95.e8.
  • Qu L, Jiang Y, Cheng C, et al. Crystal structure of ATP-Bound human ABCF1 demonstrates a unique conformation of ABC proteins. Structure. 2018;26(9):1259–1265.e3.
  • Rosenberg MF, Bikadi Z, Hazai E, et al. Three-dimensional structure of the human breast cancer resistance protein (BCRP/ABCG2) in an inward-facing conformation. Acta Crystallogr D Biol Crystallogr. 2015;71(Pt 8):1725–1735.
  • Lee J-Y, Kinch LN, Borek DM, et al. Crystal structure of the human sterol transporter ABCG5/ABCG8. Nature. 2016;533(7604):561–564.
  • Events—The Human Protein Atlas [Internet]. [cited 2022 Apr 12]. https://www.proteinatlas.org/news/events.
  • Schimanski S, Wild PJ, Treeck O, et al. Expression of the lipid transporters ABCA3 and ABCA1 is diminished in human breast cancer tissue. Horm Metab Res. 2010;42(2):102–109.
  • Scala S, Saeki T, Lynch A, et al. Coexpression of TGF alpha, epidermal growth factor receptor, and P-glycoprotein in normal and benign diseased breast tissues. Diagn Mol Pathol. 1995;4(2):136–142.
  • Delou JM de A, Vignal GM, ndio-do-Brasil V, et al. Loss of constitutive ABCB1 expression in breast cancer associated with worse prognosis. Breast Cancer: Targets and Therapy. 2017;9:415–428.
  • Maliepaard M, Scheffer GL, Faneyte IF, et al. Subcellular localization and distribution of the breast cancer resistance protein transporter in normal human tissues. Cancer Res. 2001;61(8):3458–3464.
  • Borst P, Elferink RO. Mammalian ABC transporters in health and disease. Annu Rev Biochem. 2002;71:537–592.
  • Wind NS, Holen I. Multidrug resistance in breast cancer: from in vitro models to clinical studies. Int J Breast Cancer. 2011;2011:e967419.
  • Lehuédé C, Li X, Dauvillier S, et al. Adipocytes promote breast cancer resistance to chemotherapy, a process amplified by obesity: role of the major vault protein (MVP). Breast Cancer Res. 2019;21(1):7.
  • Doyle LA, Yang W, Abruzzo LV, et al. A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc Natl Acad Sci U S A. 1998;95(26):15665–15670.
  • Welsh J. Chapter 40: Animal models for studying prevention and treatment of breast cancer. In: Conn PM, editor. Animal models for the study of human disease. Boston: Academic Press; 2013. p. 997–1018.
  • Clarke R, Jones BC, Sevigny CM, et al. Experimental models of endocrine responsive breast cancer: strengths, limitations, and use. Cancer Drug Resist. 2021;4:762–783.
  • Mlejnek P, Kosztyu P, Dolezel P, et al. Reversal of ABCB1 mediated efflux by imatinib and nilotinib in cells expressing various transporter levels. Chem Biol Interact. 2017;273:171–179.
  • A, Doyle, L, Ross DD. Multidrug resistance mediated by the breast cancer resistance protein BCRP (ABCG2). Oncogene. 2003;22(47):7340–7358.
  • Park S, Shimizu C, Shimoyama T, et al. Gene expression profiling of ATP-binding cassette (ABC) transporters as a predictor of the pathologic response to neoadjuvant chemotherapy in breast cancer patients. Breast Cancer Res Treat. 2006;99(1):9–17.
  • Verenich S, Gerk PM. Peroxynitrite and 4-hydroxynonenal inactivate breast cancer resistance protein/ABCG2. Biomed Res Int. 2019;2019:1–6.
  • Albrecht C, Viturro E. The ABCA subfamily—gene and protein structures, functions and associated hereditary diseases. Pflugers Arch. 2007;453(5):581–589.
  • Tanaka H, Ohshima N, Ikenoya M, et al. HMN-176, an active metabolite of the synthetic antitumor agent HMN-214, restores chemosensitivity to multidrug-resistant cells by targeting the transcription factor NF-Y. Cancer Res. 2003;63(20):6942–6947.
  • Bao L, Hazari S, Mehra S, et al. Increased expression of P-glycoprotein and doxorubicin chemoresistance of metastatic breast cancer is regulated by miR-298. Am J Pathol. 2012;180(6):2490–2503.
  • Hong L, Han Y, Zhang H, et al. The prognostic and chemotherapeutic value of miR-296 in esophageal squamous cell carcinoma. Ann Surg. 2010;251(6):1056–1063.
  • Materna V, Liedert B, Thomale J, et al. Protection of platinum–DNA adduct formation and reversal of cisplatin resistance by anti-MRP2 hammerhead ribozymes in human cancer cells. Int J Cancer. 2005;115(3):393–402.
  • Conseil G, Perez-Victoria JM, Jault J-M, et al. Protein kinase C effectors bind to multidrug ABC transporters and inhibit their activity. Biochemistry. 2001;40(8):2564–2571.
  • Norouzi-Barough L, Sarookhani M, Salehi R, et al. CRISPR/Cas9, a new approach to successful knockdown of ABCB1/P-glycoprotein and reversal of chemosensitivity in human epithelial ovarian cancer cell line. Iran J Basic Med Sci. 2018;21(2):181–187.
  • Wang H, Gao Z, Liu X, et al. Targeted production of reactive oxygen species in mitochondria to overcome cancer drug resistance. Nat Commun. 2018;9(1):562.
  • Borowski E, Bontemps-Gracz MM, Piwkowska A. Strategies for overcoming ABC-transporters-mediated multidrug resistance (MDR) of tumor cells. Acta Biochim Pol. 2005;52(3):609–627.
  • Yang C, He X, Song L, et al. Gamma-Fe2O3 nanoparticles increase therapeutic efficacy of combination with paclitaxel and anti-ABCG2 monoclonal antibody on multiple myeloma cancer stem cells in mouse model. J Biomed Nanotechnol. 2014;10(2):336–344.
  • Li H, Krstin S, Wang S, et al. Capsaicin and piperine can overcome multidrug resistance in cancer cells to doxorubicin. Molecules. 2018;23(3):557.
  • Kruit JK, Wijesekara N, Westwell-Roper C, et al. Loss of both ABCA1 and ABCG1 results in increased disturbances in islet sterol homeostasis, inflammation, and impaired β-cell function. Diabetes. 2012;61(3):659–664.
  • Yan H, Cheng L, Jia R, et al. ATP-binding cassette Sub-family a member1 gene mutation improves lipid metabolic abnormalities in diabetes mellitus. Lipids Health Dis. 2019;18(1):103.
  • Dvorak P, Pesta M, Soucek P. ABC gene expression profiles have clinical importance and possibly form a new hallmark of cancer. Tumour Biol. 2017;39(5):1010428317699800.
  • Hlaváč V, Brynychová V, Václavíková R, et al. The expression profile of ATP-binding cassette transporter genes in breast carcinoma. Pharmacogenomics. 2013;14(5):515–529.
  • Pan H, Zheng Y, Pan Q, et al. Expression of LXR‑β, ABCA1 and ABCG1 in human triple‑negative breast cancer tissues. Oncol Rep. 2019;42(5):1869–1877.
  • Zhao W, Prijic S, Urban BC, et al. Candidate antimetastasis drugs suppress the metastatic capacity of breast cancer cells by reducing membrane fluidity. Cancer Res. 2016;76(7):2037–2049.
  • Liver X. Receptor (LXR)-regulated genes of cholesterol trafficking and breast cancer severity. Anticancer Res. 2017;37(10):5495–5498.
  • Margaryan N, Hazard-Jenkins H, Salkeni M, et al. The stem cell phenotype of aggressive breast cancer cells. Cancers. 2019;1(3):340.
  • Chisaki I, Kobayashi M, Itagaki S, et al. Liver X receptor regulates expression of MRP2 but not that of MDR1 and BCRP in the liver. Biochim Biophys Acta. 2009;1788(11):2396–2403.
  • Mazumdar A, Medina D, Kittrell FS, et al. The combination of tamoxifen and the rexinoid LG100268 prevents ER-positive and ER-negative mammary tumors in p53-null mammary gland mice. Cancer Prev Res (Phila). 2012;5(10):1195–1202.
  • Moazzeni H, Najafi A, Khani M. Identification of direct target genes of miR-7, miR-9, miR-96, and miR-182 in the human breast cancer cell lines MCF-7 and MDA-MB-231. Mol Cell Probes. 2017;34:45–52.
  • Hlaváč V, Václavíková R, Brynychová V, et al. Role of genetic variation in ABC transporters in breast cancer prognosis and therapy response. IJMS. 2020;21(24):9556.
  • Choi C-H. ABC transporters as multidrug resistance mechanisms and the development of chemosensitizers for their reversal. Cancer Cell Int. 2005;5:30.
  • Leonessa F, Clarke R. ATP binding cassette transporters and drug resistance in breast cancer. Endocr Relat Cancer. 2003;10(1):43–73.
  • Liu S, Chen S, Yuan W, et al. PD-1/PD-L1 interaction up-regulates MDR1/P-gp expression in breast cancer cells via PI3K/AKT and MAPK/ERK pathways. Oncotarget. 2017;8(59):99901–99912.
  • Rottenberg S, Nygren AOH, Pajic M, et al. Selective induction of chemotherapy resistance of mammary tumors in a conditional mouse model for hereditary breast cancer. Proc Natl Acad Sci U S A. 2007;104(29):12117–12122.
  • Pajic M, Iyer JK, Kersbergen A, et al. Moderate increase in Mdr1a/1b expression causes in vivo resistance to doxorubicin in a mouse model for hereditary breast cancer. Cancer Res. 2009;69(16):6396–6404.
  • Seyffer F, Tampé R. ABC transporters in adaptive immunity. Biochim Biophys Acta. 2015;1850(3):449–460.
  • Smith AJ, van Helvoort A, van Meer G, et al. MDR3 P-glycoprotein, a phosphatidylcholine translocase, transports several cytotoxic drugs and directly interacts with drugs as judged by interference with nucleotide trapping. J Biol Chem. 2000;275(31):23530–23539.
  • Borst P. Looking back at multidrug resistance (MDR) research and ten mistakes to be avoided when writing about ABC transporters in MDR. FEBS Lett. 2020;594(23):4001–4011.
  • Atalay C, Demirkazik A, Gunduz U. Role of ABCB1 and ABCC1 gene induction on survival in locally advanced breast cancer. J Chemother. 2008;20(6):734–739.
  • Zhu Z, Wang B, Bi J, et al. Cytoplasmic HuR expression correlates with P-gp, HER-2 positivity, and poor outcome in breast cancer. Tumour Biol. 2013;34(4):2299–2308.
  • Litviakov NV, Cherdyntseva NV, Tsyganov MM, et al. Deletions of multidrug resistance gene loci in breast cancer leads to the down-regulation of its expression and predict tumor response to neoadjuvant chemotherapy. Oncotarget. 2016;7(7):7829–7841.
  • Jin Y, Zhang W, Wang H, et al. EGFR/HER2 inhibitors effectively reduce the malignant potential of MDR breast cancer evoked by P-gp substrates in vitro and in vivo. Oncol Rep. 2016;35(2):771–778.
  • Sicchieri RD, da Silveira WA, Mandarano LRM, et al. ABCG2 is a potential marker of tumor-initiating cells in breast cancer. Tumour Biol. 2015;36(12):9233–9243.
  • Burger H, Foekens JA, Look MP, et al. RNA expression of breast cancer resistance protein, lung resistance-related protein, multidrug resistance-associated proteins 1 and 2, and multidrug resistance gene 1 in breast cancer: correlation with chemotherapeutic response. Clin Cancer Res. 2003;9(2):827–836.
  • Balaji SA, Udupa N, Chamallamudi MR, et al. Role of the drug transporter ABCC3 in breast cancer chemoresistance. PLoS One. 2016;11(5):e0155013.
  • Prajoko YW, Aryandono T. The effect of P-glycoprotein (P-gp), nuclear factor-kappa B (Nf-κb), and aldehyde dehydrogenase-1 (ALDH-1) expression on metastases, recurrence and survival in advanced breast cancer patients. Asian Pac J Cancer Prev. 2019;20(5):1511–1518.
  • Peters S, Camidge DR, Shaw AT, et al. Alectinib versus crizotinib in untreated ALK-positive non–small-cell lung cancer. N Engl J Med. 2017;377(9):829–838.
  • Faneyte IF, Kristel PMP, van de Vijver MJ. DeterminingMDR1/P-glycoprotein expression in breast cancer. Int. J. Cancer. 2001;93(1):114–122.
  • Levy D, de Melo TC, Oliveira BA, et al. 7-Ketocholesterol and cholestane-triol increase expression of SMO and LXRα signaling pathways in a human breast cancer cell line. Biochem Biophys Rep. 2019;19:100604.
  • Elia J, Carbonnelle D, Logé C, et al. 4-cholesten-3-one decreases breast cancer cell viability and alters membrane raft-localized EGFR expression by reducing lipogenesis and enhancing LXR-dependent cholesterol transporters. Lipids Health Dis. 2019;18(1):168.
  • Wang Y, Ma G, Wang Q, et al. Involvement of CUL4A in regulation of multidrug resistance to P-gp substrate drugs in breast cancer cells. Molecules. 2013;19(1):159–176.
  • Li Q-Q, Wang W-J, Xu J-D, et al. Involvement of CD147 in regulation of multidrug resistance to P-gp substrate drugs and in vitro invasion in breast cancer cells. Cancer Sci. 2007;98(7):1064–1069.
  • Chen X. Function of Aurora kinase a in Taxol-resistant breast cancer and its correlation with P-gp. Mol Med Report. 2011;4(4):739–746.
  • Ge C, Cao B, Feng D, et al. The down-regulation of SLC7A11 enhances ROS induced P-gp over-expression and drug resistance in MCF-7 breast cancer cells. Sci Rep. 2017;7(1):3791.
  • Fultang N, Illendula A, Lin J, et al. ROR1 regulates chemoresistance in breast cancer via modulation of drug efflux pump ABCB1. Sci Rep. 2020;10(1):1821.
  • Dufour R, Daumar P, Mounetou E, et al. BCRP and P-gp relay overexpression in triple negative basal-like breast cancer cell line: a prospective role in resistance to Olaparib. Sci Rep. 2015;5:12670.
  • Zhang L, Yang A, Wang M, et al. Enhanced autophagy reveals vulnerability of P-gp mediated epirubicin resistance in triple negative breast cancer cells. Apoptosis. 2016;21(4):473–488.
  • Chen T, Wang C, Liu Q, et al. Dasatinib reverses the multidrug resistance of breast cancer MCF-7 cells to doxorubicin by downregulating P-gp expression via inhibiting the activation of ERK signaling pathway. Cancer Biol Ther. 2015;16(1):106–114.
  • Zhang N, Zhang Z, Wong ILK, et al. 4,5-Di-substituted benzyl-imidazol-2-substituted amines as the structure template for the design and synthesis of reversal agents against P-gp-mediated multidrug resistance breast cancer cells. Eur J Med Chem. 2014;83:74–83.
  • Calcagno AM, Salcido CD, Gillet J-P, et al. Prolonged drug selection of breast cancer cells and enrichment of cancer stem cell characteristics. JNCI: J Natl Cancer Inst. 2010;102(21):1637–1652.
  • Zhang E, Liu J, Shi L, et al. 7-O-geranylquercetin contributes to reverse P-gp-mediated adriamycin resistance in breast cancer. Life Sci. 2019;238:116938.
  • Li S, Zhao Q, Wang B, et al. Quercetin reversed MDR in breast cancer cells through down-regulating P-gp expression and eliminating cancer stem cells mediated by YB-1 nuclear translocation: the chemosensitization of quercetin. Phytother Res. 2018;32(8):1530–1536.
  • Václavíková R, Boumendjel A, Ehrlichová M, et al. Modulation of paclitaxel transport by flavonoid derivatives in human breast cancer cells. Is there a correlation between binding affinity to NBD of P-gp and modulation of transport? Bioorg Med Chem. 2006;14(13):4519–4525.
  • Gao W, Lin Z, Chen M, et al. The co-delivery of a low-dose P-glycoprotein inhibitor with doxorubicin sterically stabilized liposomes against breast cancer with low P-glycoprotein expression. Int J Nanomedicine. 2014;9:3425–3437.
  • Nayak D, Tripathi N, Kathuria D, et al. Quinacrine and curcumin synergistically increased the breast cancer stem cells death by inhibiting ABCG2 and modulating DNA damage repair pathway. Int J Biochem Cell Biol. 2020;119:105682.
  • Li Y, Zhai Z, Li H, et al. Guajadial reverses multidrug resistance by inhibiting ABC transporter expression and suppressing the PI3K/Akt pathway in drug-resistant breast cancer cells. Chem Biol Interact. 2019;305:98–104.
  • Domanitskaya N, Wangari-Talbot J, Jacobs J, et al. Abcc10 status affects mammary tumour growth, metastasis, and docetaxel treatment response. Br J Cancer. 2014;111(4):696–707.
  • Wen S, Su S, Liou B, et al. Sulbactam-enhanced cytotoxicity of doxorubicin in breast cancer cells. Cancer Cell Int. 2018;18(1):128.
  • Katayama R, Koike S, Sato S, et al. Dofequidar fumarate sensitizes cancer stem-like side population cells to chemotherapeutic drugs by inhibiting ABCG2/BCRP-mediated drug export. Cancer Sci. 2009;100(11):2060–2068.
  • Yang H, Deng L, Li T, et al. Multifunctional PLGA nanobubbles as theranostic agents: Combining doxorubicin and P-gp siRNA Co-Delivery into human breast cancer cells and ultrasound cellular imaging. J Biomed Nanotechnol. 2015;11(12):2124–2136.
  • Wu Y, Zhang Y, Zhang W, et al. Reversing of multidrug resistance breast cancer by co-delivery of P-gp siRNA and doxorubicin via folic acid-modified core-shell nanomicelles. Colloids Surf B Biointerfaces. 2016;138:60–69.
  • Zhao L, Wang Y, Jiang L, et al. MiR-302a/b/c/d cooperatively sensitizes breast cancer cells to adriamycin via suppressing P-glycoprotein(P-gp) by targeting MAP/ERK kinase kinase 1 (MEKK1). J Exp Clin Cancer Res. 2016;35(1):25.
  • AL-Eitan LN, Rababa’h DM, Alghamdi MA, et al. Role of four ABC transporter genes in pharmacogenetic susceptibility to breast cancer in jordanian patients. J Oncol. 2019;2019:6425708.
  • Spitzwieser M, Pirker C, Koblmüller B, et al. Promoter methylation patterns of ABCB1, ABCC1 and ABCG2 in human cancer cell lines, multidrug-resistant cell models and tumor, tumor-adjacent and tumor-distant tissues from breast cancer patients. Oncotarget. 2016;7(45):73347–73369.
  • Zhu Y, Yu F, Jiao Y, et al. Reduced miR-128 in breast tumor–initiating cells induces chemotherapeutic resistance via bmi-1 and ABCC5. Clin Cancer Res. 2011;17(22):7105–7115.
  • Liang Z, Wu H, Xia J, et al. Involvement of miR-326 in chemotherapy resistance of breast cancer through modulating expression of multidrug resistance-associated protein 1. Biochem Pharmacol. 2010;79(6):817–824.
  • Chang L, Hu Z, Zhou Z, et al. Linc00518 contributes to multidrug resistance through regulating the MiR-199a/MRP1 axis in breast cancer. Cell Physiol Biochem. 2018;48(1):16–28.
  • Kovalchuk O, Filkowski J, Meservy J, et al. Involvement of microRNA-451 in resistance of the MCF-7 breast cancer cells to chemotherapeutic drug doxorubicin. Mol Cancer Ther. 2008;7(7):2152–2159.
  • Calcagno AM, Fostel JM, To KKW, et al. Single-step doxorubicin-selected cancer cells overexpress the ABCG2 drug transporter through epigenetic changes. Br J Cancer. 2008;98(9):1515–1524.
  • Jiao X, Zhao L, Ma M, et al. MiR-181a enhances drug sensitivity in mitoxantone-resistant breast cancer cells by targeting breast cancer resistance protein (BCRP/ABCG2). Breast Cancer Res Treat. 2013;139(3):717–730.
  • Pan Y-Z, Morris ME, Yu A-M. MicroRNA-328 negatively regulates the expression of breast cancer resistance protein (BCRP/ABCG2) in human cancer cells. Mol Pharmacol. 2009;75(6):1374–1379.
  • Chen Z, Pan T, Jiang D, et al. The lncRNA-GAS5/miR-221-3p/DKK2 axis modulates ABCB1-mediated adriamycin resistance of breast cancer via the wnt/β-catenin signaling pathway. Mol Ther Nucleic Acids. 2020;19:1434–1448.
  • Chakraborty R, Gupta H, Rahman R, et al. In silico analysis of nsSNPs in ABCB1 gene affecting breast cancer associated protein P-glycoprotein (P-gp). Comput Biol Chem. 2018;77:430–441.
  • Vencatto RW, Marson FAL, Martins CD, et al. Association between C1236T (rs1128503) variant in ABCB1 gene and breast cancer recurrence. CCAND. 2018;5(1):60–64.
  • Kafka A, Sauer G, Jaeger C, et al. Polymorphism C3435T of the MDR-1 gene predicts response to preoperative chemotherapy in locally advanced breast cancer. Int J Oncol. 2003;22(5):1117–1121.
  • Ji M, Tang J, Zhao J, et al. Polymorphisms in genes involved in drug detoxification and clinical outcomes of anthracycline-based neoadjuvant chemotherapy in Chinese Han breast cancer patients. Cancer Biol Ther. 2012;13(5):264–271.
  • Chaturvedi P, Tulsyan S, Agarwal G, et al. Influence of ABCB1 genetic variants in breast cancer treatment outcomes. Cancer Epidemiol. 2013;37(5):754–761.
  • Madrid-Paredes A, Cañadas-Garre M, Sánchez-Pozo A, et al. ABCB1 C3435T gene polymorphism as a potential biomarker of clinical outcomes in HER2-positive breast cancer patients. Pharmacol Res. 2016;108:111–118.
  • Alsaif AA, Hasan TN, Shafi G, et al. Association of multiple drug resistance-1 gene polymorphism with multiple drug resistance in breast cancer patients from an ethnic Saudi Arabian population. Cancer Epidemiology. 2013;37(5):762–766.
  • Chang H, Rha SY, Jeung H-C, et al. Association of the ABCB1 gene polymorphisms 2677G > T/a and 3435C > T with clinical outcomes of paclitaxel monotherapy in metastatic breast cancer patients. Ann Oncol. 2009;20(2):272–277.
  • Agarwal G, Tulsyan S, Lal P, et al. Generalized multifactor dimensionality reduction (GMDR) analysis of drug-metabolizing enzyme-encoding gene polymorphisms may predict treatment outcomes in Indian breast cancer patients. World J Surg. 2016;40(7):1600–1610.
  • Ashariati A. Polymorphism C3435T of the MDR-1 gene predict response to preoperative chemotherapy in locally advanced breast cancer with Her2/neu expression. Acta Med Indones. 2008;40:5.
  • George J, Dharanipragada K, Krishnamachari S, et al. A single-nucleotide polymorphism in the MDR1 gene as a predictor of response to neoadjuvant chemotherapy in breast cancer. Clin Breast Cancer. 2009;9(3):161–165.
  • Cizmarikova M, Wagnerova M, Schonova L, et al. MDR1 (C3435T) polymorphism: relation to the risk of breast cancer and therapeutic outcome. Pharmacogenomics J. 2010;10(1):62–69.
  • Bai-lin Z, Tong S, Bao-ning Z, et al. Polymorphisms of GSTP1 is associated with differences of chemotherapy response and toxicity in breast cancer. Chinese Med J (Engl). 2011;124(2):199–204.
  • Fajac A, Gligorov J, Rezai K, et al. Effect of ABCB1 C3435T polymorphism on docetaxel pharmacokinetics according to menopausal status in breast cancer patients. Br J Cancer. 2010;103(4):560–566.
  • Modi A, Purohit P, Roy D, et al. FOXM1 mediates GDF-15 dependent stemness and intrinsic drug resistance in breast cancer. Mol Biol Rep. 2022;49(4):2877–2888.
  • Islam MS, Islam MS, Parvin S, et al. Effect of GSTP1 and ABCC4 gene polymorphisms on response and toxicity of cyclophosphamide-epirubicin-5-fluorouracil-based chemotherapy in Bangladeshi breast cancer patients. Tumour Biol. 2015;36(7):5451–5457.
  • Mao Q, Unadkat JD. Role of the breast cancer resistance protein (BCRP/ABCG2) in drug transport—an update. AAPS J. 2015;17(1):65–82.
  • Yamada A, Ishikawa T, Ota I, et al. High expression of ATP-binding cassette transporter ABCC11 in breast tumors is associated with aggressive subtypes and low disease-free survival. Breast Cancer Res Treat. 2013;137(3):773–782.
  • Zhou Q, Ye M, Lu Y, et al. Curcumin improves the tumoricidal effect of mitomycin C by suppressing ABCG2 expression in stem Cell-Like breast cancer cells. PLoS One. 2015;10(8):e0136694.
  • Chen Y, Wang L, Zhu Y, et al. Breast cancer resistance protein (BCRP)-containing circulating microvesicles contribute to chemoresistance in breast cancer. Oncol Lett. 2015;10(6):3742–3748.
  • Faneyte IF, Kristel PMP, Maliepaard M, et al. Expression of the breast cancer resistance protein in breast cancer. Clin Cancer Res. 2002;8(4):1068–1074.
  • Das S, Mukherjee P, Chatterjee R, et al. Enhancing chemosensitivity of breast cancer stem cells by downregulating SOX2 and ABCG2 using wedelolactone-encapsulated nanoparticles. Mol Cancer Ther. 2019;18(3):680–692.
  • Guo L, Zheng P, Fan H, et al. Ultrasound reverses chemoresistance in breast cancer stem cell like cells by altering ABCG2 expression. Biosci Rep. 2017;37(6):BSR20171137.
  • Roz AE, Bard J-M, Huvelin J-M, et al. LXR agonists and ABCG1-dependent cholesterol efflux in MCF-7 breast cancer cells: Relation to proliferation and apoptosis. Anticancer Res. 2012;32(7):3007–3013.
  • Xie M, Fu Z, Cao J, et al. MicroRNA-132 and microRNA-212 mediate doxorubicin resistance by down-regulating the PTEN-AKT/NF-κB signaling pathway in breast cancer. Biomed Pharmacother. 2018;102:286–294.
  • Wang Z, Wang N, Liu P, et al. MicroRNA-25 regulates chemoresistance-associated autophagy in breast cancer cells, a process modulated by the natural autophagy inducer isoliquiritigenin. Oncotarget. 2014;5(16):7013–7026.
  • Rottenberg S, Borst P. Drug resistance in the mouse cancer clinic. Drug Resist Updat. 2012;15(1–2):81–89.
  • Beck WT, Grogan TM, Willman CL, et al. Methods to detect P-glycoprotein-associated multidrug resistance in patients’ tumors: consensus recommendations. Cancer Res. 1996;56(13):3010–3020.
  • Iqbal M, Gibb W, Matthews SG. Corticosteroid regulation of P-glycoprotein in the developing blood-brain barrier. Endocrinology. 2011;152(3):1067–1079.
  • Morales MM, Capella MAM, Sanches MV, et al. Modulation of the mdr-1b gene in the kidney of rats subjected to dehydration or a high-salt diet. Pflugers Arch. 2000;439(3):356–362.
  • Dewanjee S, Dua T, Bhattacharjee N, et al. Natural products as alternative choices for P-Glycoprotein (P-gp) inhibition. Molecules. 2017;22(6):871.
  • To KKW, Wu X, Yin C, et al. Reversal of multidrug resistance by Marsdenia tenacissima and its main active ingredients polyoxypregnanes. J Ethnopharmacol. 2017;203:110–119.
  • Modi A, Purohit P, Gadwal A, et al. In-silico analysis of differentially expressed genes and their regulating microRNA involved in lymph node metastasis in invasive breast carcinoma. Cancer Investig. 2022;40(1):55–72.
  • Dipayan R, Anupama M, Manoj K, et al. MicroRNA 21 emerging role in diabetic complications: A critical update. Curr Diabetes Rev. 2021;17(2):122–135.}

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.