263
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Tissue engineering approaches and generation of insulin-producing cells to treat type 1 diabetes

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 14-31 | Received 17 Mar 2022, Accepted 22 Jul 2022, Published online: 08 Aug 2022

References

  • van de Vyver M. Intrinsic mesenchymal stem cell dysfunction in diabetes mellitus: implications for autologous cell therapy. Stem Cells Dev. 2017;26(14):1042–1053.
  • Nazarian-Samani Z, Sewell RD, Lorigooini Z, et al. Medicinal plants with multiple effects on diabetes mellitus and its complications: a systematic review. Curr Diab Rep. 2018;18(10):72.
  • Wartchow KM, Rodrigues L, Lissner LJ, et al. Insulin-producing cells from mesenchymal stromal cells: protection against cognitive impairment in diabetic rats depends upon implant site. Life Sci. 2020;251:117587.
  • Khazaei MR, Makalani F, Ghanbari E, et al. An overview of effective herbal and antioxidant compounds on diabetes. J Contemp Med Sci. 2018;4(3):126–133.
  • Porat S, Dor Y. New sources of pancreatic beta cells. Curr Diab Rep. 2007;7(4):304–308.
  • Shapiro AJ, Ricordi C, Hering BJ, et al. International trial of the Edmonton protocol for islet transplantation. N Engl J Med. 2006;355(13):1318–1330.
  • Brennan DC, Kopetskie H, Sayre P, et al. Long-term follow-up of the Edmonton protocol of islet transplantation in the United States. Am J Transplant. 2016;16(2):509–517.
  • Stabler CL, Giraldo JA, Berman DM, et al. Transplantation of PEGylated islets enhances therapeutic efficacy in a diabetic nonhuman primate model. Am J Transplant. 2020;20(3):689–700.
  • Salg GA, Giese NA, Schenk M, et al. The emerging field of pancreatic tissue engineering: a systematic review and evidence map of scaffold materials and scaffolding techniques for insulin-secreting cells. J Tissue Eng. 2019;10:2041731419884708.
  • Nalbach L, Roma LP, Schmitt BM, et al. Improvement of islet transplantation by the fusion of islet cells with functional blood vessels. EMBO Mol Med. 2021;13(1):e12616.
  • Mobarra N, Soleimani M, Pakzad R, et al. Three-dimensional nanofiberous PLLA/PCL scaffold improved biochemical and molecular markers hiPS cell-derived insulin-producing islet-like cells. Artif Cells Nanomed Biotechnol. 2018;46(Suppl 3):S685–S692.
  • Herberts CA, Kwa MS, Hermsen HP. Risk factors in the development of stem cell therapy. J Transl Med. 2011;9(1):1–14.
  • Montanucci P, Pescara T, Greco A, et al. Co-microencapsulation of human umbilical cord-derived mesenchymal stem and pancreatic islet-derived insulin producing cells in experimental type 1 diabetes. Diabetes/Metab Res Rev. 2020;37(2):e3372.
  • Lee M, Jeong SY, Ha J, et al. Low immunogenicity of allogeneic human umbilical cord blood-derived mesenchymal stem cells in vitro and in vivo. Biochem Biophys Res Commun. 2014;446(4):983–989.
  • Lohan P, Treacy O, Griffin MD, et al. Anti-donor immune responses elicited by allogeneic mesenchymal stem cells and their extracellular vesicles: are we still learning? Front Immunol. 2017;8:1626.
  • Mohammadi N, Mardomi A, Hassannia H, et al. Mouse bone marrow-derived mesenchymal stem cells acquire immunogenicity concurrent with differentiation to insulin-producing cells. Immunobiology. 2020;225(5):151994.
  • Xu B, Fan D, Zhao Y, et al. Three-dimensional culture promotes the differentiation of human dental pulp mesenchymal stem cells into insulin-producing cells for improving the diabetes therapy. Front Pharmacol. 2019;10:1576.
  • Marappagounder D, Somasundaram I, Dorairaj S, et al. Differentiation of mesenchymal stem cells derived from human bone marrow and subcutaneous adipose tissue into pancreatic islet-like clusters in vitro. Cell Mol Biol Lett. 2013;18(1):75–88.
  • Magisson J, Sassi A, Xhema D, et al. Safety and function of a new pre-vascularized bioartificial pancreas in an allogeneic rat model. J Tissue Eng. 2020;11:2041731420924818.
  • Zhu Y, Wang D, Yao X, et al. Biomimetic hybrid scaffold of electrospun silk fibroin and pancreatic decellularized extracellular matrix for islet survival. J Biomater Sci Polym Ed. 2021;32(2):151–165.
  • Green JJ, Elisseeff JH. Mimicking biological functionality with polymers for biomedical applications. Nature. 2016;540(7633):386–394.
  • Mansour RN, Barati G, Soleimani M, et al. Generation of high-yield insulin producing cells from human-induced pluripotent stem cells on polyethersulfone nanofibrous scaffold. Artif Cells Nanomed Biotechnol. 2018;46(Suppl 1):733–739.
  • Forbes JM, Cooper ME. Mechanisms of diabetic complications. Physiol Rev. 2013;93(1):137–188.
  • Ghanbari E, Nejati V, Khazaei M, et al. Antioxidant and protective effects of royal jelly on histopathological changes in testis of diabetic rats. Int J Reprod Biomed. 2016;14(8):519–526.
  • Otto-Buczkowska E, Jainta N. Pharmacological treatment in diabetes mellitus type 1-insulin and what else? Int J Endocrinol Metab. 2018;16(1):e13008.
  • Witkowski P, Philipson LH, Kaufman DB, et al. The demise of islet allotransplantation in the United States: a call for an urgent regulatory update. Am J Transplant. 2021;21(4):1365–1375.
  • Ghanbari E, Nejati V, Khazaei M. Improvement in serum biochemical alterations and oxidative stress of liver and pancreas following use of royal jelly in streptozotocin-induced diabetic rats. Cell J (Yakhteh). 2016;18(3):362.
  • Aathira R, Jain V. Advances in management of type 1 diabetes mellitus. World J Diabetes. 2014;5(5):689–696.
  • Bruni A, Gala-Lopez B, Pepper AR, et al. Islet cell transplantation for the treatment of type 1 diabetes: recent advances and future challenges. Diabetes Metab Syndr Obes. 2014;7:211.
  • Gregory JM, Cherrington AD, Moore DJ. The peripheral peril: Injected insulin induces insulin insensitivity in type 1 diabetes. Diabetes. 2020;69(5):837–847.
  • Smail HO. The role of gene therapy in the treatments of type 1 diabetes mellitus: a review. Bio Med Nat Prod Chem. 2020;9(2):57–64.
  • Ludvigsson J. Combination therapy for preservation of beta cell function in type 1 diabetes: new attitudes and strategies are needed!. Immunol Lett. 2014;159(1-2):30–35.
  • Dias I, Pinheiro D, Silva KR, et al. Secretome effect of adipose tissue-derived stem cells cultured two-dimensionally and three-dimensionally in mice with streptozocin induced type 1 diabetes. Curr Res Pharmacol Drug Discov. 2021;2:100069.
  • Poy MN, Eliasson L, Krutzfeldt J, et al. A pancreatic islet-specific microRNA regulates insulin secretion. Nature. 2004;432(7014):226–230.
  • Piran M, Enderami SE, Piran M, et al. Insulin producing cells generation by overexpression of miR-375 in adipose-derived mesenchymal stem cells from diabetic patients. Biologicals. 2017;46:23–28.
  • Mo Y, Wang Z, Gao J, et al. Comparative study of three types of mesenchymal stem cell to differentiate into pancreatic β-like cells in vitro. Exp Ther Med. 2021;22(3):1–11.
  • Hashemi J, Pasalar P, Soleimani M, et al. Application of a novel bioreactor for in vivo engineering of pancreas tissue. J Cell Physiol. 2018;233(5):3805–3816.
  • Kim HJ, Park J-S. Usage of human mesenchymal stem cells in cell-based therapy: advantages and disadvantages. Dev Reprod. 2017;21(1):1–10.
  • Pileggi A. Mesenchymal stem cells for the treatment of diabetes. Diabetes. 2012;61(6):1355–1356.
  • Cho J, D’Antuono M, Glicksman M, et al. A review of clinical trials: mesenchymal stem cell transplant therapy in type 1 and type 2 diabetes mellitus. Am J Stem Cells. 2018;7(4):82–93.
  • Wu H, Mahato RI. Mesenchymal stem cell-based therapy for type 1 diabetes. Discov Med. 2014;17(93):139–143.
  • Khatri R, Mazurek S, Petry SF, et al. Mesenchymal stem cells promote pancreatic β-cell regeneration through downregulation of FoxO1 pathway. Stem Cell Res Ther. 2020;11(1):497.
  • Khatri R, Petry SF, Linn T. Intrapancreatic MSC transplantation facilitates pancreatic islet regeneration. Stem Cell Res Ther. 2021;12(1):1–14.
  • Izadi M, Nejad ASH, Moazenchi M, et al. Mesenchymal stem cells transplantation in newly diagnosed type-1 diabetes patients: a phase I/II randomized controlled trial. Cytotherapy. 2020;22(5):S85–S86.
  • Razavi M, Ren T, Zheng F, et al. Facilitating islet transplantation using a three-step approach with mesenchymal stem cells, encapsulation, and pulsed focused ultrasound. Stem Cell Res Ther. 2020;11(1):405.
  • Li Y, Zhang R, Qiao H, et al. Generation of insulin-producing cells from PDX-1 gene-modified human mesenchymal stem cells. J Cell Physiol. 2007;211(1):36–44.
  • Domouky AM, Hegab AS, Al-Shahat A, et al. Mesenchymal stem cells and differentiated insulin producing cells are new horizons for pancreatic regeneration in type I diabetes mellitus. Int J Biochem Cell Biol. 2017;87:77–85.
  • Rekittke NE, Ang M, Rawat D, et al. Regenerative therapy of type 1 diabetes mellitus: from pancreatic islet transplantation to mesenchymal stem cells. Stem Cells Int. 2016;2016:1–22.
  • Lysy PA, Weir GC, Bonner-Weir S. Concise review: pancreas regeneration: recent advances and perspectives. Stem Cells Transl Med. 2012;1(2):150–159.
  • Chen S, Du K, Zou C. Current progress in stem cell therapy for type 1 diabetes mellitus. Stem Cell Res Ther. 2020;11(1):275.
  • Nadri S, Barati G, Mostafavi H, et al. Differentiation of conjunctiva mesenchymal stem cells into secreting islet beta cells on plasma treated electrospun nanofibrous scaffold. Artif Cells Nanomed Biotechnol. 2018;46(Suppl 1):178–187.
  • Warshauer JT, Bluestone JA, Anderson MS. New frontiers in the treatment of type 1 diabetes. Cell Metab. 2020;31(1):46–61.
  • Han Y, Li X, Zhang Y, et al. Mesenchymal stem cells for regenerative medicine. Cells. 2019;8(8):886.
  • Xin Y, Jiang X, Wang Y, et al. Insulin-producing cells differentiated from human bone marrow mesenchymal stem cells in vitro ameliorate streptozotocin-induced diabetic hyperglycemia. PLoS One. 2016;11(1):e0145838.
  • Chhabra P, Brayman KL. Stem cell therapy to cure type 1 diabetes: from hype to hope. Stem Cells Transl Med. 2013;2(5):328–336.
  • Aghazadeh Y, Nostro MC. Cell therapy for type 1 diabetes: current and future strategies. Curr Diab Rep. 2017;17(6):37.
  • Pagliuca FW, Millman JR, Gürtler M, et al. Generation of functional human pancreatic β cells in vitro. Cell. 2014;159(2):428–439.
  • Schulz TC. Concise review: manufacturing of pancreatic endoderm cells for clinical trials in type 1 diabetes. Stem Cells Transl Med. 2015;4(8):927–931.
  • D’Amour KA, Bang AG, Eliazer S, et al. Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol. 2006;24(11):1392–1401.
  • Rezania A, Bruin JE, Arora P, et al. Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nat Biotechnol. 2014;32(11):1121–1133
  • Zhang D, Jiang W, Liu M, et al. Highly efficient differentiation of human ES cells and iPS cells into mature pancreatic insulin-producing cells. Cell Res. 2009;19(4):429–438.
  • Russ HA, Parent AV, Ringler JJ, et al. Controlled induction of human pancreatic progenitors produces functional beta-like cells in vitro. EMBO J. 2015;34(13):1759–1772.
  • Mu XP, Ren LQ, Yan HW, et al. Enhanced differentiation of human amniotic fluid-derived stem cells into insulin-producing cells in vitro. J Diabetes Investig. 2017;8(1):34–43.
  • Päth G, Perakakis N, Mantzoros CS, et al. Stem cells in the treatment of diabetes mellitus—focus on mesenchymal stem cells. Metabolism. 2019;90:1–15.
  • Tao T, Wang Y, Chen W, et al. Engineering human islet organoids from iPSCs using an organ-on-chip platform. Lab Chip. 2019;19(6):948–958.
  • Ghoneim MA, Refaie AF, Elbassiouny BL, et al. From mesenchymal stromal/stem cells to insulin-producing cells: progress and challenges. Stem Cell Rev Rep. 2020;16(6):1156–1172.
  • Wu L-F, Wang N-N, Liu Y-S, et al. Differentiation of Wharton’s jelly primitive stromal cells into insulin-producing cells in comparison with bone marrow mesenchymal stem cells. Tissue Eng Part A. 2009;15(10):2865–2873.
  • Zhang Y, Dou Z. Under a nonadherent state, bone marrow mesenchymal stem cells can be efficiently induced into functional islet-like cell clusters to normalize hyperglycemia in mice: a control study. Stem Cell Res Ther. 2014;5(3):1–13.
  • Strem BM, Hicok KC, Zhu M, et al. Multipotential differentiation of adipose tissue-derived stem cells. Keio J Med. 2005;54(3):132–141.
  • Ranjbaran H, Abediankenari S, Khalilian A, et al. Differentiation of Wharton’s jelly derived mesenchymal stem cells into insulin producing cells. Int J Hematol Oncol Stem Cell Res. 2018;12(3):220–229.
  • Kamal MM, Kassem DH. Therapeutic potential of Wharton’s jelly mesenchymal stem cells for diabetes: achievements and challenges. Front Cell Dev Biol. 2020;8:16.
  • Chao KC, Chao KF, Fu YS, et al. Islet-like clusters derived from mesenchymal stem cells in Wharton’s jelly of the human umbilical cord for transplantation to control type 1 diabetes. PLoS One. 2008;3(1):e1451.
  • Qu H, Liu X, Ni Y, et al. Laminin 411 acts as a potent inducer of umbilical cord mesenchymal stem cell differentiation into insulin-producing cells. J Transl Med. 2014;12(1):135–112.
  • Manaph NPA, Sivanathan KN, Nitschke J, et al. An overview on small molecule-induced differentiation of mesenchymal stem cells into beta cells for diabetic therapy. Stem Cell Res Ther. 2019;10(1):1–18.
  • Al Madhoun A, Ali H, AlKandari S, et al. Defined three-dimensional culture conditions mediate efficient induction of definitive endoderm lineage from human umbilical cord wharton’s jelly mesenchymal stem cells. Stem Cell Res Ther. 2016;7(1):165.
  • Rezania A, Bruin JE, Riedel MJ, et al. Maturation of human embryonic stem cell–derived pancreatic progenitors into functional islets capable of treating pre-existing diabetes in mice. Diabetes. 2012;61(8):2016–2029.
  • Narayanan K, Lim VY, Shen J, et al. Extracellular matrix-mediated differentiation of human embryonic stem cells: differentiation to insulin-secreting beta cells. Tissue Eng Part A. 2014;20(1–2):424–433.
  • Santos T, Percegona L, Gonzalez P, et al. Expression of ­pancreatic endocrine markers by mesenchymal stem cells from human umbilical cord vein. Transplant Proc. 2010;42(2):563–565.
  • Tang D-Q, Wang Q, Burkhardt BR, et al. In vitro generation of functional insulin-producing cells from human bone marrow-derived stem cells, but long-term culture running risk of malignant transformation. Am J Stem Cells. 2012;1(2):114–127.
  • Gabr MM, Zakaria MM, Refaie AF, et al. Insulin-producing cells from adult human bone marrow mesenchymal stem cells control streptozotocin-induced diabetes in nude mice. Cell Transplant. 2013;22(1):133–145.
  • Gabr MM, Zakaria MM, Refaie AF, et al. Generation of insulin-producing cells from human bone marrow-derived mesenchymal stem cells: comparison of three differentiation protocols. Biomed Res Int. 2014;2014:1–9.
  • Xie R, Everett LJ, Lim H-W, et al. Dynamic chromatin remodeling mediated by polycomb proteins orchestrates pancreatic differentiation of human embryonic stem cells. Cell Stem Cell. 2013;12(2):224–237.
  • Shibata T, Naruse K, Kamiya H, et al. Transplantation of bone marrow–derived mesenchymal stem cells improves diabetic polyneuropathy in rats. Diabetes. 2008;57(11):3099–3107.
  • Ikemoto T, Feng R, Iwahashi S-I, et al. In vitro and in vivo effects of insulin-producing cells generated by xeno-antigen free 3D culture with RCP piece. Sci Rep. 2019;9(1):10759.
  • Wada Y, Ikemoto T, Morine Y, et al. The differences in the characteristics of insulin-producing cells using human adipose-tissue derived mesenchymal stem cells from subcutaneous and visceral tissues. Sci Rep. 2019;9(1):13204.
  • Kim H-S, Hong S-H, Oh S-H, et al. Activin A, exendin-4, and glucose stimulate differentiation of human pancreatic ductal cells. J Endocrinol. 2013;217(3):241–252.
  • Otonkoski T, Beattie GM, Mally MI, et al. Nicotinamide is a potent inducer of endocrine differentiation in cultured human fetal pancreatic cells. J Clin Invest. 1993;92(3):1459–1466.
  • Mashima H, Shibata H, Mine T, et al. Formation of insulin-producing cells from pancreatic acinar AR42J cells by hepatocyte growth factor. Endocrinology. 1996;137(9):3969–3976.
  • Oliveira AG, Araújo TG, Carvalho B, et al. The role of hepatocyte growth factor (HGF) in insulin resistance and diabetes. Front Endocrinol (Lausanne). 2018;9:503.
  • Xu G, Stoffers DA, Habener JF, et al. Exendin-4 stimulates both beta-cell replication and neogenesis, resulting in increased beta-cell mass and improved glucose tolerance in diabetic rats. Diabetes. 1999;48(12):2270–2276.
  • Yang Z, Chen M, Carter JD, et al. Combined treatment with lisofylline and exendin-4 reverses autoimmune diabetes. Biochem Biophys Res Commun. 2006;344(3):1017–1022.
  • Kassem DH, Kamal MM, El-Kholy AE-LG, et al. Exendin-4 enhances the differentiation of wharton’s jelly mesenchymal stem cells into insulin-producing cells through activation of various β-cell markers. Stem Cell Res Ther. 2016;7(1):108.
  • Gan J, Wang Y, Zhou X. Stem cell transplantation for the treatment of patients with type 1 diabetes mellitus: a meta-analysis. Exp Ther Med. 2018;16(6):4479–4492.
  • Katuchova J, Harvanova D, Spakova T, et al. Mesenchymal stem cells in the treatment of type 1 diabetes mellitus. Endocr Pathol. 2015;26(2):95–103.
  • Jiang W, Shi Y, Zhao D, et al. In vitro derivation of functional insulin-producing cells from human embryonic stem cells. Cell Res. 2007;17(4):333–344.
  • Choi KS, Shin J-S, Lee J-J, et al. In vitro trans-differentiation of rat mesenchymal cells into insulin-producing cells by rat pancreatic extract. Biochem Biophys Res Commun. 2005;330(4):1299–1305.
  • Jiang Y, Jahagirdar BN, Reinhardt RL, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature. 2002;418(6893):41–49.
  • Kroon E, Martinson LA, Kadoya K, et al. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol. 2008;26(4):443–452.
  • Lumelsky N, Blondel O, Laeng P, et al. Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science. 2001;292(5520):1389–1394.
  • Russ HA, Sintov E, Anker-Kitai L, et al. Insulin-producing cells generated from dedifferentiated human pancreatic beta cells expanded in vitro. PLoS One. 2011;6(9):e25566.
  • Jeon K, Lim H, Kim J-H, et al. Differentiation and transplantation of functional pancreatic beta cells generated from induced pluripotent stem cells derived from a type 1 diabetes mouse model. Stem Cells Dev. 2012;21(14):2642–2655.
  • Shin L, Peterson DA. Impaired therapeutic capacity of autologous stem cells in a model of type 2 diabetes. Stem Cells Transl Med. 2012;1(2):125–135.
  • Burt RK, Oyama Y, Traynor A, et al. Hematopoietic stem cell therapy for type 1 diabetes: induction of tolerance and islet cell neogenesis. Autoimmun Rev. 2002;1(3):133–138.
  • Banakh I, Gonez LJ, Sutherland RM, et al. Adult pancreas side population cells expand after β cell injury and are a source of insulin-secreting cells. PLoS One. 2012;7(11):e48977.
  • Machado C, Telles P, Nascimento ILO. Immunological characteristics of mesenchymal stem cells. Rev Bras Hematol Hemoter. 2013;35(1):62–67.
  • Rodriguez-Fernandez S, Almenara-Fuentes L, Perna-Barrull D, et al. A century later, still fighting back: antigen-specific immunotherapies for type 1 diabetes. Immunol Cell Biol. 2021;99(5):461–474.
  • Hwa AJ, Weir GC. Transplantation of macroencapsulated insulin-producing cells. Curr Diab Rep. 2018;18(8):50.
  • Sharon N, Chawla R, Mueller J, et al. A peninsular structure coordinates asynchronous differentiation with morphogenesis to generate pancreatic islets. Cell. 2019;176(4):790–804.e13.
  • Lysy PA, Weir GC, Bonner-Weir S. Making β cells from adult cells within the pancreas. Curr Diab Rep. 2013;13(5):695–703.
  • Ramiya VK, Maraist M, Arfors KE, et al. Reversal of insulin-dependent diabetes using islets generated in vitro from pancreatic stem cells. Nat Med. 2000;6(3):278–282.
  • Xie L, Zeng X, Hu J, et al. Characterization of nestin, a selective marker for bone marrow derived mesenchymal stem cells. Stem Cells Int. 2015;2015:762098.
  • Bernal A, Arranz L. Nestin-expressing progenitor cells: function, identity and therapeutic implications. Cell Mol Life Sci. 2018;75(12):2177–2195.
  • Herrera MB, Bruno S, Buttiglieri S, et al. Isolation and characterization of a stem cell population from adult human liver. Stem Cells. 2006;24(12):2840–2850.
  • Sapir T, Shternhall K, Meivar-Levy I, et al. Cell-replacement therapy for diabetes: Generating functional insulin-producing tissue from adult human liver cells. Proc Natl Acad Sci USA. 2005;102(22):7964–7969.
  • Zalzman M, Anker-Kitai L, Efrat S. Differentiation of human liver-derived, insulin-producing cells toward the β-cell phenotype. Diabetes. 2005;54(9):2568–2575.
  • Meivar-Levy I, Ferber S. Reprogramming of liver cells into insulin-producing cells. Best Pract Res Clin Endocrinol Metab. 2015;29(6):873–882.
  • Cerdá-Esteban N, Naumann H, Ruzittu S, et al. Stepwise reprogramming of liver cells to a pancreas progenitor state by the transcriptional regulator Tgif2. Nat Commun. 2017;8(1):14127–14113.
  • Navarro-Tableros V, Gai C, Gomez Y, et al. Islet-like structures generated in vitro from adult human liver stem cells revert hyperglycemia in diabetic SCID mice. Stem Cell Rev Rep. 2019;15(1):93–111.
  • Wang X, Maxwell KG, Wang K, et al. A nanofibrous encapsulation device for safe delivery of insulin-producing cells to treat type 1 diabetes. Sci Transl Med. 2021;13(596):eabb4601.
  • Espona-Noguera A, Ciriza J, Cañibano-Hernández A, et al. Review of advanced hydrogel-based cell encapsulation systems for insulin delivery in type 1 diabetes mellitus. Pharmaceutics. 2019;11(11):597.
  • Vaithilingam V, Tuch BE. Islet transplantation and encapsulation: an update on recent developments. Rev Diabet Stud. 2011;8(1):51–67.
  • Scharp DW, Marchetti P. Encapsulated islets for diabetes therapy: history, current progress, and critical issues requiring solution. Adv Drug Deliv Rev. 2014;67:35–73.
  • Soon-Shiong P, Heintz RE, Merideth N, et al. Insulin independence in a type 1 diabetic patient after encapsulated islet transplantation. Lancet (London, England). 1994;343(8903):950–951.
  • Dang TT, Thai AV, Cohen J, et al. Enhanced function of immuno-isolated islets in diabetes therapy by co-encapsulation with an anti-inflammatory drug. Biomaterials. 2013;34(23):5792–5801.
  • Vegas AJ, Veiseh O, Doloff JC, et al. Combinatorial hydrogel library enables identification of materials that mitigate the foreign body response in primates. Nat Biotechnol. 2016;34(3):345–352.
  • Strand BL, Ryan L, Veld P, et al. Poly-l-lysine induces fibrosis on alginate microcapsules via the induction of cytokines. Cell Transplant. 2001;10(3):263–275.
  • Farina M, Alexander JF, Thekkedath U, et al. Cell encapsulation: overcoming barriers in cell transplantation in diabetes and beyond. Adv Drug Deliv Rev. 2019;139:92–115.
  • Kleinberger RM, Burke NA, Dalnoki-Veress K, et al. Systematic study of alginate-based microcapsules by micropipette aspiration and confocal fluorescence microscopy. Mater Sci Eng C Mater Biol Appl. 2013;33(7):4295–4304.
  • Song S, Roy S. Progress and challenges in macroencapsulation approaches for type 1 diabetes (T1D) treatment: cells, ­biomaterials, and devices. Biotechnol Bioeng. 2016;113(7):1381–1402.
  • Schweicher J, Nyitray C, Desai TA. Membranes to achieve immunoprotection of transplanted islets. Front Biosci (Landmark Ed). 2014;19(1):49–76.
  • Kieffer TJ, Woltjen K, Osafune K, et al. Beta-cell replacement strategies for diabetes. J Diabetes Investig. 2018;9(3):457–463.
  • Omami M, McGarrigle JJ, Reedy M, et al. Islet microencapsulation: strategies and clinical status in diabetes. Curr Diab Rep. 2017;17(7):47.
  • Weaver JD, Headen DM, Aquart J, et al. Vasculogenic hydrogel enhances islet survival, engraftment, and function in leading extrahepatic sites. Sci Adv. 2017;3(6):e1700184.
  • Rafael E, Wu G, Hultenby K, et al. Improved survival of macroencapsulated islets of langerhans by preimplantation of the immunoisolating device: a morphometric study. Cell Transplant. 2003;12(4):407–412.
  • Fraker CA, Cechin S, Álvarez-Cubela S, et al. A physiological pattern of oxygenation using perfluorocarbon-based culture devices maximizes pancreatic islet viability and enhances β-cell function. Cell Transplant. 2013;22(9):1723–1733.
  • Le Pape F, Cosnuau-Kemmat L, Richard G, et al. HEMOXCell, a new oxygen carrier usable as an additive for mesenchymal stem cell culture in platelet lysate-supplemented media. Artif Organs. 2017;41(4):359–371.
  • Rodriguez-Brotons A, Bietiger W, Peronet C, et al. Comparison of perfluorodecalin and HEMOXCell as oxygen carriers for islet oxygenation in an in vitro model of encapsulation. Tissue Eng Part A. 2016;22(23–24):1327–1336.
  • Haller C, Piccand J, De Franceschi F, et al. Macroencapsulated human iPSC-derived pancreatic progenitors protect against STZ-induced hyperglycemia in mice. Stem Cell Rep. 2019;12(4):787–800.
  • Kumagai-Braesch M, Jacobson S, Mori H, et al. The TheraCyte™ device protects against islet allograft rejection in immunized hosts. Cell Transplant. 2013;22(7):1137–1146.
  • Robert T, De Mesmaeker I, Stangé GM, et al. Functional beta cell mass from device-encapsulated hESC-derived pancreatic endoderm achieving metabolic control. Stem Cell Rep. 2018;10(3):739–750.
  • Nyitray CE, Chang R, Faleo G, et al. Polycaprolactone thin-film micro-and nanoporous cell-encapsulation devices. ACS Nano. 2015;9(6):5675–5682.
  • Chang R, Faleo G, Russ HA, et al. Nanoporous immunoprotective device for stem-cell-derived β-cell replacement therapy. ACS Nano. 2017;11(8):7747–7757.
  • Pepper AR, Gala-Lopez B, Pawlick R, et al. A prevascularized subcutaneous device-less site for islet and cellular transplantation. Nat Biotechnol. 2015;33(5):518–523.
  • Kozlovskaya V, Zavgorodnya O, Chen Y, et al. Ultrathin polymeric coatings based on hydrogen-bonded polyphenol for protection of pancreatic islet cells. Adv Funct Mater. 2012;22(16):3389–3398.
  • Zhi Z-L, Khan F, Pickup JC. Multilayer nanoencapsulation: a nanomedicine technology for diabetes research and management. Diabetes Res Clin Pract. 2013;100(2):162–169.
  • Krol S, Del Guerra S, Grupillo M, et al. Multilayer nanoencapsulation. New approach for immune protection of human pancreatic islets. Nano Lett. 2006;6(9):1933–1939.
  • Knobeloch T, Abadi SEM, Bruns J, et al. Injectable polyethylene glycol hydrogel for islet encapsulation: an in vitro and in vivo characterization. Biomed Phys Eng Express. 2017;3(3):035022.
  • Sakata N, Sumi S, Yoshimatsu G, et al. Encapsulated islets transplantation: past, present and future. World J Gastrointest Pathophysiol. 2012;3(1):19–26.
  • Ravnic DJ, Leberfinger AN, Ozbolat IT. Bioprinting and cellular therapies for type 1 diabetes. Trends Biotechnol. 2017;35(11):1025–1034.
  • Desai T, Shea LD. Advances in islet encapsulation technologies. Nat Rev Drug Discov. 2017;16(5):338–350.
  • Lee SJ, Lee JB, Park Y-W, et al. 3D bioprinting for artificial pancreas organ. Biomimetic Medical Materials. 2018;1064:355–374.
  • Kim J, Kang K, Drogemuller CJ, et al. Bioprinting an artificial pancreas for type 1 diabetes. Curr Diab Rep. 2019;19(8):1–10.
  • Wang N, Adams G, Buttery L, et al. Alginate encapsulation technology supports embryonic stem cells differentiation into insulin-producing cells. J Biotechnol. 2009;144(4):304–312.
  • Jafarian A, Taghikhani M, Abroun S, et al. Generation of high-yield insulin producing cells from human bone marrow mesenchymal stem cells. Mol Biol Rep. 2014;41(7):4783–4794.
  • Llacua LA, Faas MM, de Vos P. Extracellular matrix molecules and their potential contribution to the function of transplanted pancreatic islets. Diabetologia. 2018;61(6):1261–1272.
  • Ghahremani-Nasab M, Ghanbari E, Jahanbani Y, et al. Premature ovarian failure and tissue engineering. J Cell Physiol. 2020;235(5):4217–4226.
  • Hosseini M, Dadashi-Noshahr K, Islami M, et al. A novel silk/PES hybrid nanofibrous scaffold promotes the in vitro proliferation and differentiation of adipose-derived mesenchymal stem cells into insulin producing cells. Polym Adv Technol. 2020;31(8):1857–1864.
  • Amer LD, Mahoney MJ, Bryant SJ. Tissue engineering approaches to cell-based type 1 diabetes therapy. Tissue Eng Part B Rev. 2014;20(5):455–467.
  • Kumar N, Joisher H, Ganguly A. Polymeric scaffolds for pancreatic tissue engineering: a review. Rev Diabet Stud. 2018;14(4):334–353.
  • Asghari F, Samiei M, Adibkia K, et al. Biodegradable and biocompatible polymers for tissue engineering application: a review. Artif Cells Nanomed Biotechnol. 2017;45(2):185–192.
  • Olabisi RM. Cell microencapsulation with synthetic polymers. J Biomed Mater Res A. 2015;103(2):846–859.
  • Enderami SE, Soleimani M, Mortazavi Y, et al. Generation of insulin-producing cells from human adipose-derived mesenchymal stem cells on PVA scaffold by optimized differentiation protocol. J Cell Physiol. 2018;233(5):4327–4337.
  • Karimi R, Barabadi Z, Larijani B, et al. Comparison of insulin secretion by transduced adipose-derived and endometrial-derived stem cells in 2D and 3D cultures on fibrin scaffold. J Biomed Mater Res Part A. 2020;109(6):1036–1044.
  • Dufour JM, Rajotte RV, Zimmerman M, et al. Development of an ectopic site for islet transplantation, using biodegradable scaffolds. Tissue Eng. 2005;11(9–10):1323–1331.
  • Wang R, Rosenberg L. Maintenance of beta-cell function and survival following islet isolation requires re-establishment of the islet-matrix relationship. J Endocrinol. 1999;163(2):181–190.
  • Gibly RF, Zhang X, Graham ML, et al. Extrahepatic islet transplantation with microporous polymer scaffolds in syngeneic mouse and allogeneic porcine models. Biomaterials. 2011;32(36):9677–9684.
  • Berman DM, O’Neil JJ, Coffey LC, et al. Long-term survival of nonhuman primate islets implanted in an omental pouch on a biodegradable scaffold. Am J Transplant. 2009;9(1):91–104.
  • Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32(8):773–785.
  • Yue Z, Liu X, Coates PT, et al. Advances in printing biomaterials and living cells: implications for islet cell transplantation. Curr Opin Organ Transplant. 2016;21(5):467–475.
  • Schubert C, Van Langeveld MC, Donoso LA. Innovations in 3D printing: a 3D overview from optics to organs. Br J Ophthalmol. 2014;98(2):159–161.
  • Ozbolat IT, Chen H, Yu Y. Development of ‘multi-arm bioprinter’for hybrid biofabrication of tissue engineering constructs. Rob Comput Integr Manuf. 2014;30(3):295–304.
  • Kolesky DB, Truby RL, Gladman AS, et al. 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv Mater. 2014;26(19):3124–3130.
  • Di Bella C, Duchi S, O’Connell CD, et al. In situ handheld three-dimensional bioprinting for cartilage regeneration. J Tissue Eng Regen Med. 2018;12(3):611–621.
  • Kesti M, Eberhardt C, Pagliccia G, et al. Bioprinting complex cartilaginous structures with clinically compliant biomaterials. Adv Funct Mater. 2015;25(48):7406–7417.
  • Derakhshanfar S, Mbeleck R, Xu K, et al. 3D bioprinting for biomedical devices and tissue engineering: a review of recent trends and advances. Bioact Mater. 2018;3(2):144–156.
  • Marchioli G, van Gurp L, Van Krieken P, et al. Fabrication of three-dimensional bioplotted hydrogel scaffolds for islets of langerhans transplantation. Biofabrication. 2015;7(2):025009.
  • Duin S, Schütz K, Ahlfeld T, et al. 3D bioprinting of functional islets of langerhans in an alginate/methylcellulose hydrogel blend. Adv Healthcare Mater. 2019;8(7):1801631.
  • Penko D, Mohanasundaram D, Sen S, et al. Incorporation of endothelial progenitor cells into mosaic pseudoislets. Islets. 2011;3(3):73–79.
  • Ma M, Chiu A, Sahay G, et al. Core–shell hydrogel microcapsules for improved islets encapsulation. Adv Healthc Mater. 2013;2(5):667–672.
  • Agrawal P, Pramanik K. Enhanced chondrogenic differentiation of human mesenchymal stem cells in silk fibroin/chitosan/glycosaminoglycan scaffolds under dynamic culture condition. Differentiation. 2019;110:36–48.
  • Afflerbach A-K, Kiri MD, Detinis T, et al. Mesenchymal stem cells as a promising cell source for integration in novel in vitro models. Biomolecules. 2020;10(9):1306.
  • Ojaghi M, Soleimanifar F, Kazemi A, et al. Electrospun poly-l-lactic acid/polyvinyl alcohol nanofibers improved insulin-producing cell differentiation potential of human adipose-derived mesenchymal stem cells. J Cell Biochem. 2019;120(6):9917–9926.
  • Hashemi J, Pasalar P, Soleimani M, et al. Decellularized pancreas matrix scaffolds for tissue engineering using ductal or arterial catheterization. Cells Tissues Organs. 2018;205(2):72–84.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.