107
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Neurological manifestations of SARS-CoV-2 infections: towards quantum dots based management approaches

ORCID Icon & ORCID Icon
Pages 51-64 | Received 07 May 2022, Accepted 31 Jul 2022, Published online: 08 Aug 2022

References

  • Worldometer S. Covid-19 coronavirus pandemic: Worldometer, 2022.
  • Ali I, Alharbi OM. COVID-19: Disease, management, treatment, and social impact. Sci Total Environ. 2020;728:138861.
  • Hossain MU, Bhattacharjee A, Emon MTH, et al. Recognition of plausible therapeutic agents to combat COVID-19: an omics data based combined approach. Gene. 2021;771:145368.
  • Almasi F, Mohammadipanah F. Hypothetical targets and plausible drugs of coronavirus infection caused by SARS-CoV-2. Transbound Emerg Dis. 2021;68(2):318–332. Mar
  • Zhou Z, Qiu Y, Ge X. The taxonomy, host range and pathogenicity of coronaviruses and other viruses in the nidovirales order. Anim Dis. 2021;1(1):5.
  • Chen R, Fu J, Hu J, et al. Identification of the immunodominant neutralizing regions in the spike glycoprotein of porcine deltacoronavirus. Virus Res. 2020;276:197834.
  • Xia X. Domains and functions of spike protein in Sars-Cov-2 in the context of vaccine design. Viruses. 2021;13(1):109.
  • Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2):271–280. e8.
  • Yadav R, Chaudhary JK, Jain N, et al. Role of structural and non-structural proteins and therapeutic targets of SARS-CoV-2 for COVID-19. Cells. 2021;10(4):821.
  • Guerrero JI, Barragan LA, Martinez JD, et al. Central and peripheral nervous system involvement by COVID-19: a systematic review of the pathophysiology, clinical manifestations, neuropathology, neuroimaging, electrophysiology, and cerebrospinal fluid findings. BMC Infect Dis. 2021;21(1):515.
  • Bolay H, Gül A, Baykan B. COVID-19 is a real headache! Headache J Head Face Pain. 2020;60(7):1415–1421.
  • Mao L, Jin H, Wang M, et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol. 2020 Jun 1;77(6):683–690.
  • Henss L, Auste A, Schurmann C, et al. The green tea catechin epigallocatechin gallate inhibits SARS-CoV-2 infection. J Gen Virol. 2021;102(4):001574.
  • Sierra-Hidalgo F, Munoz-Rivas N, Torres Rubio P, et al. Large artery ischemic stroke in severe COVID-19. J Neurol. 2020;267(12):3441–3443. Dec
  • Romero-Sánchez CM, Díaz-Maroto I, Fernández-Díaz E, et al. Neurologic manifestations in hospitalized patients with COVID-19: the ALBACOVID registry. Neurology. 2020;95(8):e1060–e1070.
  • Kim JW, Abdullayev N, Neuneier J, et al. Post-COVID-19 encephalomyelitis. Neurol Res Pract. 2021;3(1):18.
  • Jan J-T, Cheng T-JR, Juang Y-P, et al. Identification of existing pharmaceuticals and herbal medicines as inhibitors of SARS-CoV-2 infection. Proc Natl Acad Sci USA. 2021;118(5):e2021579118.
  • Berger JR, Brandstadter R, Bar-Or A. Bar-Or A. COVID-19 and MS disease-modifying therapies. Neurol Neuroimmunol Neuroinflamm. 2020;7(4):e761. Jul
  • Altshuler DB, Kadiyala P, Nuñez FJ, et al. Prospects of biological and synthetic pharmacotherapies for glioblastoma. Expert Opin Biol Ther. 2020;20(3):305–317.
  • Hayashi M, Sahashi Y, Baba Y, et al. COVID-19-associated mild encephalitis/encephalopathy with a reversible splenial lesion. J Neurol Sci. 2020;415:116941.
  • Cariddi LP, Damavandi PT, Carimati F, et al. Reversible encephalopathy syndrome (PRES) in a COVID-19 patient. J Neurol. 2020;267(11):3157–3160.
  • Monti G, Giovannini G, Marudi A, et al. Anti-NMDA receptor encephalitis presenting as new onset refractory status epilepticus in COVID-19. Seizure. 2020;81:18–20.
  • Lau KK, Yu WC, Chu CM, et al. Possible Central nervous system infection by SARS coronavirus. Emerg Infect Dis. 2004;10(2):342–344. Feb
  • Saad M, Omrani AS, Baig K, et al. Clinical aspects and outcomes of 70 patients with Middle east respiratory syndrome coronavirus infection: a single-center experience in Saudi Arabia. Int J Infect Dis. 2014;29:301–306. Dec
  • Hepburn M, Mullaguri N, George P, et al. Acute symptomatic seizures in critically ill patients with COVID-19: is there an association? Neurocrit Care. 2021;34(1):139–143.
  • Pascual-Goñi E, Fortea J, Martínez-Domeño A, et al. COVID-19-associated ophthalmoparesis and hypothalamic involvement. Neurol Neuroimmunol Neuroinflam. 2020;7(5):e823.
  • Ferreira A, Romao TT, Macedo YS, Fellow of the American Academy of Neurology (FAAN), et al. COVID-19 and herpes zoster co-infection presenting with trigeminal neuropathy. Eur J Neurol. 2020;27(9):1748–1750. Sep
  • Loza AMM, Holroyd KB, Johnson SA, et al. Guillain-Barré syndrome in the placebo and active arms of a COVID-19 vaccine clinical trial: temporal associations do not imply causality. Neurology. 2021;96(22):1052–1054.
  • Scheidl E, Canseco DD, Hadji-Naumov A, et al. Guillain-barré syndrome during SARS-CoV-2 pandemic: a case report and review of recent literature. J Peripher Nerv Syst. 2020;25(2):204–207.
  • Li Z, Li X, Shen J, et al. Miller fisher syndrome associated with COVID-19: an up-to-date systematic review. Environ Sci Pollut Res Int. 2021 May;28(17):20939–20944.
  • Madia F, Merico B, Primiano G, et al. Acute myopathic quadriplegia in patients with COVID-19 in the intensive care unit. Neurology. 2020;95(11):492–494. Sep 15
  • Zhu N, Zhang D, Wang W, China Novel Coronavirus Investigating and Research Team, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020;382(8):727–733.
  • Wu Y, Xu X, Chen Z, et al. Nervous system involvement after infection with COVID-19 and other coronaviruses. Brain Behav Immun. 2020;87:18–22. Jul
  • Iroegbu JD, Ifenatuoha CW, Ijomone OM. Potential neurological impact of coronaviruses: implications for the novel SARS-CoV-2. Neurol Sci. 2020;41(6):1329–1337. Jun
  • Burks JS, DeVald BL, Jankovsky LD, et al. Two coronaviruses isolated from Central nervous system tissue of two multiple sclerosis patients. Science. 1980;209(4459):933–934.
  • Li Y, Li H, Fan R, et al. Coronavirus infections in the Central nervous system and respiratory tract show distinct features in hospitalized children. Intervirology. 2016;59(3):163–169.
  • Nilsson A, Edner N, Albert J, et al. Fatal encephalitis associated with coronavirus OC43 in an immunocompromised child. Infect Dis (Lond). 2020;52(6):419–422. Jun
  • Hung EC, Chim SS, Chan PK, et al. Detection of SARS coronavirus RNA in the cerebrospinal fluid of a patient with severe acute respiratory syndrome. Clin Chem. 2003;49(12):2108–2109.
  • Xu J, Zhong S, Liu J, et al. Detection of severe acute respiratory syndrome coronavirus in the brain: potential role of the chemokine mig in pathogenesis. Clin Infect Dis. 2005;41(8):1089–1096.
  • Ding Y, Wang H, Shen H, et al. The clinical pathology of severe acute respiratory syndrome (SARS): a report from China. J Pathol. 2003;200(3):282–289.
  • Umapathi T, Kor AC, Venketasubramanian N, et al. Large artery ischaemic stroke in severe acute respiratory syndrome (SARS). J Neurol. 2004;251(10):1227–1231.
  • Tsai LK, Hsieh ST, Chao CC, et al. Neuromuscular disorders in severe acute respiratory syndrome. Arch Neurol. 2004;61(11):1669–1673.
  • Chao CC, Tsai LK, Chiou YH, et al. Peripheral nerve disease in SARS: report of a case. Neurology. 2003;61(12):1820–1821.
  • Hwang CS. Olfactory neuropathy in severe acute respiratory syndrome: report of a case. Acta Neurol Taiwan. 2006;15(1):26–28.
  • Leung TW, Wong KS, Hui AC, et al. Myopathic changes associated with severe acute respiratory syndrome: a postmortem case series. Arch Neurol. 2005;62(7):1113–1117.
  • Bleibtreu A, Bertine M, Bertin C, et al. Focus on Middle east respiratory syndrome coronavirus (MERS-CoV). Med Mal Infect. 2020;50(3):243–251.
  • Arabi YM, Harthi A, Hussein J, et al. Severe neurologic syndrome associated with Middle east respiratory syndrome corona virus (MERS-CoV). Infection. 2015;43(4):495–501. Aug
  • Algahtani H, Subahi A, Shirah B. Neurological complications of Middle east respiratory syndrome coronavirus: a report of two cases and review of the literature. Case Rep Neurol Med. 2016;2016:3502683.
  • Kim JE, Heo JH, Kim HO, et al. Neurological complications during treatment of Middle east respiratory syndrome. J Clin Neurol. 2017;13(3):227–233. Jul
  • Vitalakumar D, Sharma A, Kumar A, et al. Neurological manifestations in COVID-19 patients: a meta-analysis. ACS Chemical Neuroscience. 2021;12(15):2776–2797.
  • Li Z, Liu T, Yang N, et al. Neurological manifestations of patients with COVID-19: potential routes of SARS-CoV-2 neuroinvasion from the periphery to the brain. Front Med. 2020;14(5):533–541.
  • Leven Y, Bösel J. Neurological manifestations of COVID-19–an approach to categories of pathology. Neurol Res Pract. 2021;3(1):1–12.
  • Dorche MS, Huot P, Osherov M, et al. Neurological complications of coronavirus infection; a comparative review and lessons learned during the COVID-19 pandemic. J Neurol Sci. 2020;417:117085.
  • Morgello S. Coronaviruses and the Central nervous system. J Neurovirol. 2020;26(4):459–473. Aug
  • Barichello T, Collodel A, Hasbun R, et al. An overview of the blood-brain barrier. Blood-Brain Barrier. 2019;142:1–8.
  • Banks WA. Characteristics of compounds that cross the blood-brain barrier. BMC Neurol. 2009;9(Suppl. 1):S3–S5.
  • Hashimoto Y, Campbell M. Tight junction modulation at the blood-brain barrier: current and future perspectives. Biochim Biophys Acta Biomembr. 2020;1862(9):183298.
  • Profaci CP, Munji RN, Pulido RS, et al. The blood–brain barrier in health and disease: Important unanswered questions. J Experim Med. 2020;217(4):e20190062.
  • Erickson MA, Rhea EM, Knopp RC, et al. Interactions of SARS-CoV-2 with the blood–brain barrier. IJMS. 2021;22(5):2681.
  • Bohmwald K, Galvez N, Ríos M, et al. Neurologic alterations due to respiratory virus infections. Front Cell Neurosci. 2018;12:386.
  • Leda AR, Bertrand L, Andras IE, et al. Selective disruption of the blood–brain barrier by zika virus. Front Microbiol. 2019;10:2158.
  • Bertrand L, Cho HJ, Toborek M. Blood–brain barrier pericytes as a target for HIV-1 infection. Brain. 2019;142(3):502–511.
  • Crema A, Ponzetto A, Clementi M, et al. Steps and routes of HCV infection: the great promise of new anti-Viral targets. Curr Drug Targets. 2015;16(7):757–770.
  • Suen WW, Prow NA, Hall RA, et al. Mechanism of West Nile virus neuroinvasion: a critical appraisal. Viruses. 2014;6(7):2796–2825. 18
  • Lancet T. Facing up to long COVID. Lancet. 2020;396(10266):1861.
  • Rychert J, Strick D, Bazner S, et al. Detection of HIV gp120 in plasma during early HIV infection is associated with increased proinflammatory and immunoregulatory cytokines. AIDS Res Hum Retroviruses. 2010;26(10):1139–1145.
  • Rhea EM, Logsdon AF, Hansen KM, et al. The S1 protein of SARS-CoV-2 crosses the blood–brain barrier in mice. Nat Neurosci. 2021;24(3):368–378.
  • Tay MZ, Poh CM, Renia L, et al. The Trinity of COVID-19: immunity, inflammation and intervention. Nat Rev Immunol. 2020;20(6):363–374.
  • Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in wuhan, China. Lancet. 2020;395(10223):497–506.
  • Erickson MA, Wilson ML, Banks WA. In vitro modeling of blood–brain barrier and interface functions in neuroimmune communication. Fluids Barriers CNS. 2020;17(1):1–16.
  • Lee MH, Perl DP, Nair G, et al. Microvascular injury in the brains of patients with covid-19. N Engl J Med. 2021;384(5):481–483.
  • Grant MC, Geoghegan L, Arbyn M, et al. The prevalence of symptoms in 24,410 adults infected by the novel coronavirus (SARS-CoV-2; COVID-19): a systematic review and Meta-analysis of 148 studies from 9 countries. PLoS One. 2020;15(6):e0234765.
  • Eskilsson A, Mirrasekhian E, Dufour S, et al. Immune-induced fever is mediated by IL-6 receptors on brain endothelial cells coupled to STAT3-dependent induction of brain endothelial prostaglandin synthesis. J Neurosci. 2014;34(48):15957–15961.
  • Fritz M, Klawonn AM, Nilsson A, et al. Prostaglandin-dependent modulation of dopaminergic neurotransmission elicits inflammation-induced aversion in mice. J Clin Invest. 2016;126(2):695–705. Feb
  • Llorens S, Nava E, Munoz-Lopez M, et al. Neurological symptoms of COVID-19: the zonulin hypothesis. Front Immunol. 2021;12:665300.
  • Merrill JT, Erkan D, Winakur J, et al. Emerging evidence of a COVID-19 thrombotic syndrome has treatment implications. Nat Rev Rheumatol. 2020;16(10):581–589.
  • Sharma S, Pavuluri S, Srinivasan K, et al. Thrombotic microangiopathy in a patient with COVID-19 infection and metastatic cholangiocarcinoma. J Hematol. 2021;10(2):83–88. Apr
  • Sun X, Yin Y, Kong L, et al. The effect of propofol on hypoxia-modulated expression of heat shock proteins: potential mechanism in modulating blood–brain barrier permeability. Mol Cell Biochem. 2019;462(1-2):85–96.
  • Colgan SP, Furuta GT, Taylor CT. Hypoxia and innate immunity: Keeping up with the HIFsters. Annu Rev Immunol. 2020;38:341–363.
  • Baig AM, Khaleeq A, Ali U, et al. Evidence of the COVID-19 virus targeting the CNS: tissue distribution, host–virus interaction, and proposed neurotropic mechanisms. ACS Chem Neurosci. 2020;11(7):995–998.
  • Ou X, Liu Y, Lei X, et al. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun. 2020;11(1):1620.
  • Coutard B, Valle C, de Lamballerie X, et al. The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade. Antiviral Res. 2020;176:104742. Apr
  • Daly JL, Simonetti B, Klein K, et al. Neuropilin-1 is a host factor for SARS-CoV-2 infection. Science. 2020;370(6518):861–865.
  • Wang K, Chen W, Zhang Z, et al. CD147-spike protein is a novel route for SARS-CoV-2 infection to host cells. Sig Transduct Target Ther. 2020;5(1):1–10.
  • Paniz-Mondolfi A, Bryce C, Grimes Z, et al. Central nervous system involvement by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). J Med Virol. 2020;92(7):699–702. Jul
  • Sungnak W, Huang N, Becavin C, HCA Lung Biological Network, et al. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat Med. 2020;26(5):681–687.
  • Baig AM, Sanders EC. Potential neuroinvasive pathways of SARS-CoV-2: Deciphering the spectrum of neurological deficit seen in coronavirus disease-2019 (COVID-19). J Med Virol. 2020;92(10):1845–1857.
  • Netland J, Meyerholz DK, Moore S, et al. Severe acute respiratory syndrome coronavirus infection causes neuronal death in the absence of encephalitis in mice transgenic for human ACE2. J Virol. 2008;82(15):7264–7275. Aug
  • Desforges M, Le Coupanec A, Dubeau P, et al. Human coronaviruses and other respiratory viruses: underestimated opportunistic pathogens of the Central nervous system? Viruses. 2019;12(1):14.
  • Meinhardt J, Radke J, Dittmayer C, et al. Olfactory transmucosal SARS-CoV-2 invasion as a port of Central nervous system entry in individuals with COVID-19. Nat Neurosci. 2021;24(2):168–175.
  • Sia SF, Yan LM, Chin AWH, et al. Pathogenesis and transmission of SARS-CoV-2 in golden hamsters. Nature. 2020;583(7818):834–838. Jul
  • Dey J, Alam MT, Chandra S, et al. Neuroinvasion of SARS-CoV-2 may play a role in the breakdown of the respiratory center of the brain. J Med Virol. 2021;93(3):1296–1303.
  • Xiao F, Tang M, Zheng X, et al. Evidence for gastrointestinal infection of SARS-CoV-2. Gastroenterology. 2020;158(6):1831–1833 e3.
  • Cabirac GF, Soike KF, Butunoi C, et al. Coronavirus JHM OMP1 pathogenesis in owl monkey CNS and coronavirus infection of owl monkey CNS via peripheral routes. In Coronaviruses. Boston, MA: Springer; 1994. p. 347–352.
  • Hocke AC, Becher A, Knepper J, et al. Emerging human Middle east respiratory syndrome coronavirus causes widespread infection and alveolar damage in human lungs. Am J Respir Crit Care Med. 2013;188(7):882–886.
  • Swanson IP, McGavern DB. Viral diseases of the Central nervous system. Curr Opin Virol. 2015;11:44–54.
  • Gu J, Gong E, Zhang B, et al. Multiple organ infection and the pathogenesis of SARS. J Exp Med. 2005;202(3):415–424.
  • Bergmann CC, Lane TE, Stohlman SA. Coronavirus infection of the Central nervous system: host–virus stand-off. Nat Rev Microbiol. 2006;4(2):121–132.
  • Desforges M, Miletti TC, Gagnon M, et al. Activation of human monocytes after infection by human coronavirus 229E. Virus Res. 2007;130(1–2):228–240.
  • Feng Z, Diao B, Wang R, et al. The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) directly decimates human spleens and lymph nodes. Preprint MedRxiv. 2020. https://doi.org/10.1101/2020.03.27.20045427.
  • Amraei R, Yin W, Napoleon MA, et al. CD209L/L-SIGN and CD209/DC-SIGN act as receptors for SARS-CoV-2. ACS Cent Sci. 2021;7(7):1156–1165.
  • Yan C, Hu X, Guan P, et al. Highly biocompatible graphene quantum dots: green synthesis, toxicity comparison and fluorescence imaging. J Mater Sci. 2020;55(3):1198–1215.
  • Shaker B, Yu M-S, Song JS, et al. LightBBB: computational prediction model of blood–brain-barrier penetration based on LightGBM. Bioinformatics. 2021;37(8):1135–1139.
  • Gkountas AA, Polychronopoulos ND, Sofiadis GN, et al. Simulation of magnetic nanoparticles crossing through a simplified blood-brain barrier model for glioblastoma multiforme treatment. Comput Methods Programs Biomed. 2021;212:106477.
  • Salatin S. Nanocarriers for successful drug delivery across blood-brain barrier. J Experim Clin Neurosci. 2020;7(2):1–7.
  • Ding S, Khan AI, Cai X, et al. Overcoming blood–brain barrier transport: advances in nanoparticle-based drug delivery strategies. Mater Today. 2020;37:112–125.
  • Liu DZ, Cheng Y, Cai RQ, et al. The enhancement of siPLK1 penetration across BBB and its anti glioblastoma activity in vivo by magnet and transferrin co-modified nanoparticle. Nanomedicine. 2018;14(3):991–1003. Apr
  • Dixit S, Novak T, Miller K, et al. Transferrin receptor-targeted theranostic gold nanoparticles for photosensitizer delivery in brain tumors. Nanoscale. 2015;7;7(5):1782–1790. Feb
  • Jiang W, Xie H, Ghoorah D, et al. Conjugation of functionalized SPIONs with transferrin for targeting and imaging brain glial tumors in rat model. PLoS One. 2012;7(5):e37376.
  • Li S, Peng Z, Dallman J, et al. Crossing the blood–brain–barrier with transferrin conjugated carbon dots: a zebrafish model study. Colloids Surf B Biointerfaces. 2016;145:251–256.
  • Seven ES, Seven YB, Zhou Y, et al. Crossing the blood–brain barrier with carbon dots: uptake mechanism and in vivo cargo delivery. Nanoscale Adv. 2021;3(13):3942–3953.
  • Kumari S, Ahsan SM, Kumar JM, et al. Overcoming blood brain barrier with a dual purpose temozolomide loaded lactoferrin nanoparticles for combating glioma (SERP-17-12433). Sci Rep. 2017;7(1):6602.
  • Kumar P, Lakshmi YS, Golla K, et al. Improved safety, bioavailability and pharmacokinetics of zidovudine through lactoferrin nanoparticles during oral administration in rats. PLoS One. 2015;10(10):e0140399.
  • Kang T, Jiang M, Jiang D, et al. Enhancing glioblastoma-specific penetration by functionalization of nanoparticles with an iron-mimic peptide targeting transferrin/transferrin receptor complex. Mol Pharm. 2015;12(8):2947–2961.
  • Mitchell MJ, Billingsley MM, Haley RM, et al. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov. 2021;20(2):101–124. Feb
  • Gour A, Ramteke S, Jain NK. Pharmaceutical applications of quantum dots. AAPS PharmSciTech. 2021;22(7):233. Sep 2
  • AbouElhamd AR, Al-Sallal KA, Hassan A. Review of core/shell quantum dots technology integrated into building’s glazing. Energies. 2019;12(6):1058.
  • Abdellatif AA, Younis MA, Alsharidah M, et al. Biomedical applications of quantum dots: overview, challenges, and clinical potential. Int J Nanomedicine. 2022;17:1951–1970.
  • Zor E, Mollarasouli F, Karadurmus L, et al. Carbon dots in the detection of pathogenic bacteria and viruses. Crit Rev Anal Chem. 2022;May 9:1–29.
  • Sahoo S, Nayak A, Gadnayak A, et al. Quantum dots enabled point-of-care diagnostics: a new dimension to the nanodiagnosis. In Advanced nanomaterials for point of care diagnosis and therapy. Netherlands: Elsevier; 2022. p. 43–52.
  • Wu F, Mao M, Liu Q, et al. Ultra sensitive detection of influenza a virus based on cdse/zns quantum dots immunoassay. SOJ Biochem. 2016;2(3):2–6.
  • Ahamed HA, Mohamed MJ, Arunachalam KD, et al. Effects of azomite enriched diet on gonadal steroid hormone levels and milt quality indices in oreochromis mossambicus. Aquacult Rep. 2020;17:100341.
  • Ma Y, Wang M, Li W, et al. Live cell imaging of single genomic loci with quantum dot-labeled TALEs. Nat Commun. 2017;8(1):15318–15318.
  • Li Y, Ma P, Tao Q, et al. Magnetic graphene quantum dots facilitate closed-tube one-step detection of SARS-CoV-2 with ultra-low field NMR relaxometry. Sens Actuators B Chem. 2021;337:129786.
  • Xue Y, Liu C, Andrews G, et al. Recent advances in carbon quantum dots for virus detection, as well as inhibition and treatment of viral infection. Nano Convergence. 2022;9(1):1–31.
  • Nakamura Y, Park J-H, Hayakawa K. Therapeutic use of extracellular mitochondria in CNS injury and disease. Exp Neurol. 2020;324:113114.
  • Lu S, Guo S, Xu P, et al. Hydrothermal synthesis of nitrogen-doped carbon dots with real-time live-cell imaging and blood–brain barrier penetration capabilities. Int J Nanomed. 2016;11:6325–6336.
  • Zhou Y, Mintz KJ, Cheng L, et al. Direct conjugation of distinct carbon dots as lego-like building blocks for the assembly of versatile drug nanocarriers. J Colloid Interface Sci. 2020;576:412–425.
  • Niu Y, Tan H, Li X, et al. Protein–carbon dot nanohybrid-based early blood–brain barrier damage theranostics. ACS Appl Mater Interfaces. 2020;12(3):3445–3452.
  • Mintz KJ, Mercado G, Zhou Y, et al. Tryptophan carbon dots and their ability to cross the blood-brain barrier. Colloids Surf B Biointerfaces. 2019;176:488–493.
  • Gao L, Zhao X, Wang J, et al. Multiple functionalized carbon quantum dots for targeting glioma and tissue imaging. Opt Mater. 2018;75:764–769.
  • Li S, Amat D, Peng Z, et al. Transferrin conjugated nontoxic carbon dots for doxorubicin delivery to target pediatric brain tumor cells. Nanoscale. 2016;8(37):16662–16669.
  • Hettiarachchi SD, Graham RM, Mintz KJ, et al. Triple conjugated carbon dots as a nano-drug delivery model for glioblastoma brain tumors. Nanoscale. 2019;11(13):6192–6205.
  • Zhang W, Sigdel G, Mintz KJ, et al. Carbon dots: a future blood–brain barrier penetrating nanomedicine and drug nanocarrier. Int J Nanomedicine. 2021;16:5003–5016.
  • Sun LJ, Qu L, Yang R, et al. Cysteamine functionalized MoS2 quantum dots inhibit amyloid aggregation. Int J Biol Macromol. 2019;128:870–876. May 1
  • Tang M, Pi J, Long Y, et al. Quantum dots-based sandwich immunoassay for sensitive detection of alzheimer’s disease-related Aβ1–42. Spectrochim Acta A Mol Biomol Spectrosc. 2018;201:82–87.
  • Kim D, Yoo JM, Hwang H, et al. Graphene quantum dots prevent α-synucleinopathy in parkinson’s disease. Nat Nanotechnol. 2018;13(9):812–818.
  • Wang C, Yang F, Tang Y, et al. Graphene quantum dots nanosensor derived from 3D nanomesh graphene frameworks and its application for fluorescent sensing of Cu2+ in rat brain. Sens Actuat B: Chem. 2018;258:672–681.
  • Cai Q, Wang L, Deng G, et al. Systemic delivery to Central nervous system by engineered PLGA nanoparticles. Am J Transl Res. 2016;8(2):749–764.
  • Zhou Y, Liyanage PY, Devadoss D, et al. Nontoxic amphiphilic carbon dots as promising drug nanocarriers across the blood–brain barrier and inhibitors of β-amyloid. Nanoscale. 2019;11(46):22387–22397.
  • Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020;395(10224):565–574.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.