236
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Evaluating the reliability of tumour spheroid-on-chip models for replicating intratumoural drug delivery: considering the role of microfluidic parameters

, &
Pages 179-193 | Received 10 Jun 2022, Accepted 26 Aug 2022, Published online: 20 Sep 2022

References

  • Maeda H, Nakamura H, Fang J. The EPR effect for macromolecular drug delivery to solid tumors: Improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv Drug Deliv Rev. 2013;65(1):71–79.
  • Das V, Bruzzese F, Konečný P, et al. Pathophysiologically relevant in vitro tumor models for drug screening. Drug Discov Today. 2015;20(7):848–855.
  • Young EW. Cells, tissues, and organs on chips: challenges and opportunities for the cancer tumor microenvironment. Integr Biol (Camb). 2013;5(9):1096–1109.
  • Moshksayan K, Kashaninejad N, Warkiani ME, et al. Spheroids-on-a-chip: Recent advances and design considerations in microfluidic platforms for spheroid formation and culture. Sens Actuators B Chem. 2018;263:151–176.
  • Khademhosseini A, Langer R. Microengineered hydrogels for tissue engineering. Biomaterials. 2007;28(34):5087–5092.
  • Tsai H-F, Trubelja A, Shen AQ, et al. Tumour-on-a-chip: microfluidic models of tumour morphology, growth and microenvironment. J R Soc Interface. 2017;14(131):20170137.
  • Jang M, Koh I, Lee SJ, et al. Droplet-based microtumor model to assess cell-ECM interactions and drug resistance of gastric cancer cells. Sci Rep. 2017;7(1):41541–41510.
  • Sontheimer-Phelps A, Hassell BA, Ingber DE. Modelling cancer in microfluidic human organs-on-chips. Nat Rev Cancer. 2019;19(2):65–81.
  • Weiswald L-B, Bellet D, Dangles-Marie V. Dangles-Marie V. Spherical cancer models in tumor biology. Neoplasia. 2015;17(1):1–15.
  • Nath S, Devi GR. Three-dimensional culture systems in cancer research: Focus on tumor spheroid model. Pharmacol Ther. 2016;163:94–108.
  • Shang M, Soon RH, Lim CT, et al. Microfluidic modelling of the tumor microenvironment for anti-cancer drug development. Lab Chip. 2019;19(3):369–386.
  • Napolitano AP, Chai P, Dean DM, et al. Dynamics of the self-assembly of complex cellular aggregates on micromolded nonadhesive hydrogels. Tissue Eng. 2007;13(8):2087–2094.
  • Lee YB, Kim EM, Byun H, et al. Engineering spheroids potentiating cell-cell and cell-ECM interactions by self-assembly of stem cell microlayer. Biomaterials. 2018;165:105–120.
  • Tung Y-C, Hsiao AY, Allen SG, et al. High-throughput 3D spheroid culture and drug testing using a 384 hanging drop array. Analyst. 2011;136(3):473–478.
  • Foty R. A simple hanging drop cell culture protocol for generation of 3D spheroids. J Vis Exp. 2011;(51):e2720.
  • He H, He Q, Xu F, et al. Dynamic formation of cellular aggregates of chondrocytes and mesenchymal stem cells in spinner flask. Cell Prolif. 2019;52(4):e12587.
  • Lee T-J, Bhang SH, La W-G, et al. Spinner-flask culture induces redifferentiation of de-differentiated chondrocytes. Biotechnol Lett. 2011;33(4):829–836.
  • Amirifar L, Besanjideh M, Nasiri R, et al. Droplet-based microfluidics in biomedical applications. Biofabrication. 2022;14(2):022001.
  • Sun Q, Tan SH, Chen Q, et al. Microfluidic formation of coculture tumor spheroids with stromal cells as a novel 3D tumor model for drug testing. ACS Biomater Sci Eng. 2018;4(12):4425–4433.
  • Besanjideh M, Shamloo A, Kazemzadeh Hannani S. Enhanced oil-in-water droplet generation in a T-junction microchannel using water-based nanofluids with shear-thinning behavior: a numerical study. Phys Fluids. 2021;33(1):012007.
  • Besanjideh M, Rezaeian M, Mahmoudi Z, et al. Investigating the effects of precursor concentration and gelling parameters on droplet-based generation of Ca-Alginate microgels: identifying new stable modes of droplet formation. Mater Today Chem. 2022;24:100821.
  • Chen Y, Gao D, Liu H, et al. Drug cytotoxicity and signaling pathway analysis with three-dimensional tumor spheroids in a microwell-based microfluidic chip for drug screening. Anal Chim Acta. 2015;898:85–92.
  • Zhuang J, Zhang J, Wu M, et al. A dynamic 3D tumor spheroid chip enables more accurate nanomedicine uptake evaluation. Adv Sci (Weinh). 2019;6(22):1901462.
  • Lee DW, Doh I, Nam D-H. Unified 2D and 3D cell-based high-throughput screening platform using a micropillar/microwell chip. Sens Actuators B Chem. 2016;228:523–528.
  • Liu W, Sun M, Lu B, et al. A microfluidic platform for multi-size 3D tumor culture, monitoring and drug resistance testing. Sens Actuators B Chem. 2019;292:111–120.
  • Wan X, Li Z, Ye H, et al. Three-dimensional perfused tumour spheroid model for anti-cancer drug screening. Biotechnol Lett. 2016;38(8):1389–1395.
  • Cui Z, Xu X, Trainor N, et al. Application of multiple parallel perfused microbioreactors and three-dimensional stem cell culture for toxicity testing. Toxicol in Vitro. 2007;21(7):1318–1324.
  • Liu Y, Liu L, Ying X-X, et al. Dried rehmannia root protects against glutamate-induced cytotoxity to PC12 cells through energy metabolism-related pathways. Neural Regen Res. 2017;12(8):1338–1346.
  • Ziółkowska K, Kwapiszewski R, Stelmachowska A, et al. Development of a three-dimensional microfluidic system for long-term tumor spheroid culture. Sens Actuators B Chem. 2012;173:908–913.
  • Sabhachandani P, Motwani V, Cohen N, et al. Generation and functional assessment of 3D multicellular spheroids in droplet based microfluidics platform. Lab Chip. 2016;16(3):497–505.
  • Sabhachandani P, Sarkar S, Mckenney S, et al. Microfluidic assembly of hydrogel-based immunogenic tumor spheroids for evaluation of anticancer therapies and biomarker release. J Control Release. 2019;295:21–30.
  • Wu LY, Di Carlo D, Lee LP. Microfluidic self-assembly of tumor spheroids for anticancer drug discovery. Biomed Microdevices. 2008;10(2):197–202.
  • Liu W, Wang J-C, Wang J. Controllable organization and high throughput production of recoverable 3D tumors using pneumatic microfluidics. Lab Chip. 2015;15(4):1195–1204.
  • Fu C-Y, Tseng S-Y, Yang S-M, et al. A microfluidic chip with a U-shaped microstructure array for multicellular spheroid formation, culturing and analysis. Biofabrication. 2014;6(1):015009.
  • Yu L, Chen MC, Cheung KC. Droplet-based microfluidic system for multicellular tumor spheroid formation and anticancer drug testing. Lab Chip. 2010;10(18):2424–2432.
  • Liu Y, Yang Q, Zhang H, et al. Construction of cancer-on-a-chip for drug screening. Drug Discov Today. 2021;26(8):1875–1890.
  • Yang Q, Ju D, Liu Y, et al. Design of organ-on-a-chip to improve cell capture efficiency. Int J Mech Sci. 2021;209:106705.
  • Baxter LT, Jain RK. Transport of fluid and macromolecules in tumors. I. Role of interstitial pressure and convection. Microvasc Res. 1989;37(1):77–104.
  • Jain RK, Tong RT, Munn LL. Effect of vascular normalization by antiangiogenic therapy on interstitial hypertension, peritumor edema, and lymphatic metastasis: insights from a mathematical model. Cancer Res. 2007;67(6):2729–2735.
  • Stylianopoulos T, Jain RK. Combining two strategies to improve perfusion and drug delivery in solid tumors. Proc Natl Acad Sci USA. 2013;110(46):18632–18637.
  • Graff CP, Wittrup KD. Theoretical analysis of antibody targeting of tumor spheroids: importance of dosage for penetration, and affinity for retention. Cancer Res. 2003;63(6):1288–1296.
  • Goodman TT, Chen J, Matveev K, et al. Spatio-temporal modeling of nanoparticle delivery to multicellular tumor spheroids. Biotechnol Bioeng. 2008;101(2):388–399.
  • Gao Y, Li M, Chen B, et al. Predictive models of diffusive nanoparticle transport in 3-dimensional tumor cell spheroids. AAPS J. 2013;15(3):816–831.
  • Boucher Y, Baxter LT, Jain RK. Interstitial pressure gradients in tissue-isolated and subcutaneous tumors: implications for therapy. Cancer Res. 1990;50(15):4478–4484.
  • Wang C-H, Li J. Three-dimensional simulation of IgG delivery to tumors. Chem Eng Sci. 1998;53(20):3579–3600.
  • Teo CS, Tan WHK, Lee T, et al. Transient interstitial fluid flow in brain tumors: Effect on drug delivery. Chem Eng Sci. 2005;60(17):4803–4821.
  • Kashkooli FM, Soltani M, Hamedi M-H. Drug delivery to solid tumors with heterogeneous microvascular networks: Novel insights from image-based numerical modeling. Eur J Pharm Sci. 2020;151:105399.
  • Sefidgar M, Bashooki E, Shojaee P. Numerical simulation of the effect of necrosis area in systemic delivery of magnetic nanoparticles in hyperthermia cancer treatment. J Therm Biol. 2020;94:102742.
  • Vazifehshenas FH, Bahadori F. Investigation of soret effect on drug delivery in a tumor without necrotic core. J Taiwan Inst Chem Eng. 2019;102:17–24.
  • Zhan W, Gedroyc W, Xu XY. Effect of heterogeneous microvasculature distribution on drug delivery to solid tumour. J Phys D: Appl Phys. 2014;47(47):475401.
  • Albanese A, Lam AK, Sykes EA, et al. Tumour-on-a-chip provides an optical window into nanoparticle tissue transport. Nat Commun. 2013;4(1):1–8.
  • Toley BJ, Tropeano Lovatt ZG, Harrington JL, et al. Microfluidic technique to measure intratumoral transport and calculate drug efficacy shows that binding is essential for doxorubicin and release hampers doxil. Integr Biol (Camb). 2013;5(9):1184–1196.
  • Hu G, Li D. Three-dimensional modeling of transport of nutrients for multicellular tumor spheroid culture in a microchannel. Biomed Microdevices. 2007;9(3):315–323.
  • Barisam M, Saidi MS, Kashaninejad N, et al. Prediction of necrotic core and hypoxic zone of multicellular spheroids in a microbioreactor with a U-shaped barrier. Micromachines. 2018;9(3):94.
  • Li W, Wang H-F, Kuruneru ST, et al. A numerical investigation of drug extravasation using a tumour–vasculature microfluidic device. Microfluid Nanofluid. 2018;22(12):1–11.
  • Li W, Wang H-F, Li Z-Y, et al. Numerical investigation of drug transport from blood vessels to tumour tissue using a tumour-vasculature-on-a-chip. Chem Eng Sci. 2019;208:115155.
  • Kheiri S, Kumacheva E, Young EW. Computational modelling and big data analysis of flow and drug transport in microfluidic systems: a spheroid-on-a-chip study. Front Bioeng Biotechnol. 2021;9:1–14.
  • Hajari MA, Baheri Islami S, Chen X. A numerical study on tumor-on-chip performance and its optimization for nanodrug-based combination therapy. Biomech Model Mechanobiol. 2021;20(3):983–1002.
  • Øen SK, Aasheim LB, Eikenes L, et al. Image quality and detectability in siemens biograph PET/MRI and PET/CT systems—a phantom study. EJNMMI Phys. 2019;6(1):16.
  • Le Bars M, Worster MG. Interfacial conditions between a pure fluid and a porous medium: implications for binary alloy solidification. J Fluid Mech. 2006;550(1):149–173.
  • Eikenberry S. A tumor cord model for doxorubicin delivery and dose optimization in solid tumors. Theor Biol Med Model. 2009;6(1):1–20.
  • Barenholz YC. Doxil®—the first FDA-approved nano-drug: lessons learned. J Control Release. 2012;160(2):117–134.
  • Yokoi K, Chan D, Kojic M, et al. Liposomal doxorubicin extravasation controlled by phenotype-specific transport properties of tumor microenvironment and vascular barrier. J Control Release. 2015;217:293–299.
  • Zhao J, Salmon H, Sarntinoranont M. Effect of heterogeneous vasculature on interstitial transport within a solid tumor. Microvasc Res. 2007;73(3):224–236.
  • Pluen A, Netti PA, Jain RK, et al. Diffusion of macromolecules in agarose gels: comparison of linear and globular configurations. Biophys J. 1999;77(1):542–552.
  • Schmidt MM, Wittrup KD. A modeling analysis of the effects of molecular size and binding affinity on tumor targeting. Mol Cancer Ther. 2009;8(10):2861–2871.
  • Mpekris F, Baish JW, Stylianopoulos T, et al. Role of vascular normalization in benefit from metronomic chemotherapy. Proc Natl Acad Sci USA. 2017;114(8):1994–1999.
  • Baek N, Seo OW, Kim M, et al. Monitoring the effects of doxorubicin on 3D-spheroid tumor cells in real-time. Onco Targets Ther. 2016;9:7207–7218.
  • Huang Q, Hu X, He W, et al. Fluid shear stress and tumor metastasis. Am J Cancer Res. 2018;8(5):763–777.
  • Santoro M, Lamhamedi-Cherradi S-E, Menegaz BA, et al. Flow perfusion effects on three-dimensional culture and drug sensitivity of ewing sarcoma. Proc Natl Acad Sci USA. 2015;112(33):10304–10309.
  • Gabizon A, Catane R, Uziely B, et al. Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes. Cancer Res. 1994;54(4):987–992.
  • Pluen A, Boucher Y, Ramanujan S, et al. Role of tumor–host interactions in interstitial diffusion of macromolecules: cranial vs. subcutaneous tumors. Proc Natl Acad Sci USA. 2001;98(8):4628–4633.
  • Wu NZ, Da D, Rudoll TL, et al. Increased microvascular permeability contributes to preferential accumulation of stealth liposomes in tumor tissue. Cancer Res. 1993;53(16):3765–3770.
  • Zhan W, Xu XY. A mathematical model for thermosensitive liposomal delivery of doxorubicin to solid tumour. J Drug Deliv. 2013;2013:172529.
  • Bhandari A, Bansal A, Singh A, et al. Transport of liposome encapsulated drugs in voxelized computational model of human brain tumors. IEEE Trans Nanobioscience. 2017;16(7):634–644.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.