322
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Novel studies on Drosophila melanogaster model reveal the roles of JNK-Jak/STAT axis and intestinal microbiota in insulin resistance

, , &
Pages 261-268 | Received 02 Sep 2022, Accepted 31 Oct 2022, Published online: 10 Nov 2022

References

  • Roglic G. WHO global report on diabetes: a summary. Int J Non-Commun Dis. 2016;1(1):3.
  • Lourido F, Quenti D, Salgado-Canales D, et al. Domeless receptor loss in fat body tissue reverts insulin resistance induced by a high-sugar diet in Drosophila melanogaster. Sci Rep. 2021;11(1):3263.
  • Goldstein BJ. Insulin resistance as the core defect in type 2 diabetes mellitus. Am J Cardiol. 2002;90(5):3–10.
  • Shoelson SE, Herrero L, Naaz A, et al. Obesity, inflammation, and insulin resistance. Gastroenterology. 2007;132(6):2169–2180.
  • Schellenberg ES, Dryden DM, Vandermeer B, et al. Lifestyle interventions for patients with and at risk for type 2 diabetes: a systematic review and meta-analysis. Ann Intern Med. 2013;159(8):543–551.
  • Foley KP, Zlitni S, Denou E, et al. Long term but not short term exposure to obesity related microbiota promotes host insulin resistance. Nat Commun. 2018;9(1):1–15.
  • Musial B, Vaughan O, Sferruzzi-Perri A, et al. A diet high in sugar and fat alters the insulin signalling in the mouse placenta. Placenta. 2014;35(9):A70.
  • Winzell MS, Ahren B. The high-fat diet-fed mouse: a model for studying mechanisms and treatment of impaired glucose tolerance and type 2 diabetes. Diabetes. 2004;53(Supplement 3):S215–S219.
  • Musselman LP, Fink JL, Narzinski K, et al. A high-sugar diet produces obesity and insulin resistance in wild-type drosophila. Dis Model Mech. 2011;4(6):842–849.
  • Alfa RW, Kim SK. Using drosophila to discover mechanisms underlying type 2 diabetes. Dis Model Mech. 2016;9(4):365–376.
  • Liggett MR, Hoy MJ, Mastroianni M, et al. High-glucose diets have sex-specific effects on aging in C. elegans: toxic to hermaphrodites but beneficial to males. Aging. 2015;7(6):383–388.
  • Guo S. Insulin signaling, resistance, and metabolic syndrome: insights from mouse models into disease mechanisms. J Endocrinol. 2014;220(2):T1–T23.
  • Yu S, Zhang G, Jin LH. A high-sugar diet affects cellular and humoral immune responses in drosophila. Exp Cell Res. 2018;368(2):215–224.
  • Weina T, Ying L, Yiwen W, et al. What we have learnt from drosophila model organism: the coordination between insulin signaling pathway and tumor cells. Heliyon. 2022;8(7):e09957.
  • Gupta D. Peptidoglycan recognition proteins—maintaining immune homeostasis and normal development. Cell Host Microbe. 2008;3(5):273–274.
  • Chimnaronk S, Sitthiroongruang J, Srisucharitpanit K, et al. The crystal structure of JNK from Drosophila melanogaster reveals an evolutionarily conserved topology with that of mammalian JNK proteins. BMC Struct Biol. 2015;15(1):1–7.
  • Arbouzova NI, Zeidler MP. JAK/STAT signalling in drosophila: insights into conserved regulatory and cellular functions. 2006.
  • Inoue YH, Katsube H, Hinami Y. Drosophila models to investigate insulin action and mechanisms underlying human diabetes mellitus. 2018.
  • Baker KD, Thummel CS. Diabetic larvae and obese flies—emerging studies of metabolism in drosophila. Cell Metab. 2007;6(4):257–266.
  • Alfa RW, Park S, Skelly K-R, et al. Suppression of insulin production and secretion by a decretin hormone. Cell Metab. 2015;21(2):323–334.
  • Musso G, Gambino R, Cassader M. Interactions between gut microbiota and host metabolism predisposing to obesity and diabetes. Annu Rev Med. 2011;62:361–380.
  • Hirosumi J, Tuncman G, Chang L, et al. A central role for JNK in obesity and insulin resistance. Nature. 2002;420(6913):333–336.
  • Bako HY, Ibrahim MA, Isah MS, et al. Inhibition of JAK-STAT and NF-κB signalling systems could be a novel therapeutic target against insulin resistance and type 2 diabetes. Life Sci. 2019;239:117045.
  • Ikeya T, Galic M, Belawat P, et al. Nutrient-dependent expression of insulin-like peptides from neuroendocrine cells in the CNS contributes to growth regulation in drosophila. Curr Biol. 2002;12(15):1293–1300.
  • Kim SK, Rulifson EJ. Conserved mechanisms of glucose sensing and regulation by drosophila corpora cardiaca cells. Nature. 2004;431(7006):316–320.
  • Kim J, Neufeld TP. Dietary sugar promotes systemic TOR activation in drosophila through AKH-dependent selective secretion of Dilp3. Nat Commun. 2015;6(1):1–10.
  • Post S, Karashchuk G, Wade JD, et al. Drosophila insulin-like peptides DILP2 and DILP5 differentially stimulate cell signaling and glycogen phosphorylase to regulate longevity. Front Endocrinol (Lausanne). 2018;9:245.
  • Géminard C, Rulifson EJ, Léopold P. Remote control of insulin secretion by fat cells in drosophila. Cell Metab. 2009;10(3):199–207.
  • Rambur A, Lours-Calet C, Beaudoin C, et al. Sequential ras/MAPK and PI3K/AKT/mTOR pathways recruitment drives basal extrusion in the prostate-like gland of drosophila. Nat Commun. 2020;11(1):1–12.
  • Hay N. Interplay between FOXO, TOR, and akt. Biochim Biophys Acta. 2011;1813(11):1965–1970.
  • Jünger MA, Rintelen F, Stocker H, et al. The drosophila forkhead transcription factor FOXO mediates the reduction in cell number associated with reduced insulin signaling. J Biol. 2003;2(3):20–17.
  • Dae Hyun K, Zhang T, Sojin L, et al. FoxO6 in glucose metabolism. J Diabetes. 2013;5(3):233–240.
  • Puig O, Tjian R. Transcriptional feedback control of insulin receptor by dFOXO/FOXO1. Genes Dev. 2005;19(20):2435–2446.
  • Moshapa FT, Riches-Suman K, Palmer TM. Therapeutic targeting of the proinflammatory IL-6-JAK/STAT signalling pathways responsible for vascular restenosis in type 2 diabetes mellitus. Cardiol Res Pract. 2019;2019:9846312.
  • Dongre UJ. Adipokines in insulin resistance: current updates. Biosci, Biotech Res Asia. 2021;18(2):357–366.
  • Oldefest M, Nowinski J, Hung C-W, et al. Upd3 – an ancestor of the four-helix bundle cytokines. Biochem Biophys Res Commun. 2013;436(1):66–72.
  • Jiang H, Patel PH, Kohlmaier A, et al. Cytokine/jak/stat signaling mediates regeneration and homeostasis in the drosophila midgut. Cell. 2009;137(7):1343–1355.
  • Ding G, Xiang X, Hu Y, et al. Coordination of tumor growth and host wasting by tumor-derived Upd3. Cell Rep. 2021;36(7):109553.
  • Micchelli CA, Perrimon N. Evidence that stem cells reside in the adult drosophila midgut epithelium. Nature. 2006;439(7075):475–479.
  • Ohlstein B, Spradling A. The adult drosophila posterior midgut is maintained by pluripotent stem cells. Nature. 2006;439(7075):470–474.
  • Zhang X, Jin Q, Jin LH. High sugar diet disrupts gut homeostasis though JNK and STAT pathways in drosophila. Biochem Biophys Res Commun. 2017;487(4):910–916.
  • Yamanaka Y, Wilson EM, Rosenfeld RG, et al. Inhibition of insulin receptor activation by insulin-like growth factor binding proteins. J Biol Chem. 1997;272(49):30729–30734.
  • Honegger B, Galic M, Köhler K, et al. Imp-L2, a putative homolog of vertebrate IGF-binding protein 7, counteracts insulin signaling in drosophila and is essential for starvation resistance. J Biol. 2008;7(3):10–11.
  • Figueroa-Clarevega A, Bilder D. Malignant drosophila tumors interrupt insulin signaling to induce cachexia-like wasting. Dev Cell. 2015;33(1):47–55.
  • Jimenez-Gomez Y, Mattison JA, Pearson KJ, et al. Resveratrol improves adipose insulin signaling and reduces the inflammatory response in adipose tissue of rhesus monkeys on high-fat, high-sugar diet. Cell Metab. 2013;18(4):533–545.
  • von Frieling J, Faisal MN, Sporn F, et al. A high-fat diet induces a microbiota-dependent increase in stem cell activity in the drosophila intestine. PLoS Genet. 2020;16(5):e1008789.
  • Chen L-W, Wu Y-Y, Chung P-H, et al. Microbiota enhances intestinal immunity through JNK/ROS pathways (MUC4P. 838). Am Assoc Immnol. 2014;192(Supplement 1):133–114.
  • Mukherji A, Kobiita A, Ye T, et al. Homeostasis in intestinal epithelium is orchestrated by the circadian clock and microbiota cues transduced by TLRs. Cell. 2013;153(4):812–827.
  • Maillet F, Bischoff V, Vignal C, et al. The drosophila peptidoglycan recognition protein PGRP-LF blocks PGRP-LC and IMD/JNK pathway activation. Cell Host Microbe. 2008;3(5):293–303.
  • Chevée V, Sachar U, Yadav S, et al. The peptidoglycan recognition protein PGRP-LE regulates the drosophila immune response against the pathogen photorhabdus. Microb Pathog. 2019;136:103664.
  • Michel T, Reichhart J-M, Hoffmann JA, et al. Drosophila toll is activated by gram-positive bacteria through a circulating peptidoglycan recognition protein. Nature. 2001;414(6865):756–759.
  • Bischoff V, Vignal C, Boneca IG, et al. Function of the drosophila pattern-recognition receptor PGRP-SD in the detection of gram-positive bacteria. Nat Immunol. 2004;5(11):1175–1180.
  • Gobert V, Gottar M, Matskevich AA, et al. Dual activation of the drosophila toll pathway by two pattern recognition receptors. Science. 2003;302(5653):2126–2130.
  • Hedengren M, Dushay MS, Ando I, et al. Relish, a Central factor in the control of humoral but not cellular immunity in drosophila. Mol Cell. 1999;4(5):827–837.
  • Zaidman-Rémy A, Hervé M, Poidevin M, et al. The drosophila amidase PGRP-LB modulates the immune response to bacterial infection. Immunity. 2006;24(4):463–473.
  • Persson C, Oldenvi S, Steiner H. Peptidoglycan recognition protein LF: a negative regulator of drosophila immunity. Insect Biochem Mol Biol. 2007;37(12):1309–1316.
  • Charroux B, Royet J. Drosophila immune response: from systemic antimicrobial peptide production in fat body cells to local defense in the intestinal tract. Fly (Austin). 2010;4(1):40–47.
  • Ryu J-H, Kim S-H, Lee H-Y, et al. Innate immune homeostasis by the homeobox gene caudal and commensal-gut mutualism in drosophila. Science. 2008;319(5864):777–782.
  • Roh SW, Nam Y-D, Chang H-W, et al. Phylogenetic characterization of two novel commensal bacteria involved with innate immune homeostasis in Drosophila melanogaster. Appl Environ Microbiol. 2008;74(20):6171–6177.
  • Shin SC, Kim S-H, You H, et al. Drosophila microbiome modulates host developmental and metabolic homeostasis via insulin signaling. Science. 2011;334(6056):670–674.
  • Storelli G, Defaye A, Erkosar B, et al. Lactobacillus plantarum promotes drosophila systemic growth by modulating hormonal signals through TOR-dependent nutrient sensing. Cell Metab. 2011;14(3):403–414.
  • Westfall S, Lomis N, Prakash S. Ferulic acid produced by Lactobacillus fermentum influences developmental growth through a dTOR-mediated mechanism. Mol Biotechnol. 2019;61(1):1–11.
  • Wang H, Cheng X, Zhang L, et al. A surface-layer protein from Lactobacillus acidophilus NCFM induces autophagic death in HCT116 cells requiring ROS-mediated modulation of mTOR and JNK signaling pathways. Food Funct. 2019;10(7):4102–4112.
  • Hakim J. Reactive oxygen species and inflammation. C R Seances Soc Biol Fil. 1993;187(3):286–295.
  • El-Kenawi A, Ruffell B. Inflammation, ROS, and mutagenesis. Cancer Cell. 2017;32(6):727–729.
  • Griffith B, Pendyala S, Hecker L, et al. NOX enzymes and pulmonary disease. Antioxid Redox Signal. 2009;11(10):2505–2516.
  • Di Meo S, Iossa S, Venditti P. Skeletal muscle insulin resistance: role of mitochondria and other ROS sources. J Endocrinol. 2017;233(1):R15–R42.
  • Hotamisligil G. Inflammation and endoplasmic reticulum stress in obesity and diabetes. Int J Obes. 2008;32(S7):S52–S54.
  • Zhu ZX, Cai WH, Wang T, et al. bFGF-regulating MAPKs are involved in high glucose-mediated ROS production and delay of vascular endothelial cell migration. PLoS One. 2015;10(12):e0144495.
  • Gao W, Du X, Lei L, et al. NEFA‐induced ROS impaired insulin signalling through the JNK and p38MAPK pathways in non‐alcoholic steatohepatitis. J Cell Mol Med. 2018;22(7):3408–3422.
  • Bayliak MM, Abrat OB, Storey JM, et al. Interplay between diet-induced obesity and oxidative stress: comparison between drosophila and mammals. Comp Biochem Physiol A Mol Integr Physiol. 2019;228:18–28.
  • Zhou J, Boutros M. JNK-dependent intestinal barrier failure disrupts host–microbe homeostasis during tumorigenesis. Proc Natl Acad Sci U S A. 2020;117(17):9401–9412.
  • Lemaitre B, Hoffmann J. The host defense of Drosophila melanogaster. Annu Rev Immunol. 2007;25:697–743.
  • Deng J, Zeng L, Lai X, et al. Metformin protects against intestinal barrier dysfunction via AMPKα1‐dependent inhibition of JNK signalling activation. J Cell Mol Med. 2018;22(1):546–557.
  • Jamar G, Ribeiro DA, Pisani LP. High-fat or high-sugar diets as trigger inflammation in the microbiota-gut-brain axis. Crit Rev Food Sci Nutr. 2021;61(5):836–854.
  • Ma T, Tian X, Zhang B, et al. Low-dose metformin targets the lysosomal AMPK pathway through PEN2. Nature. 2022;603(7899):159–165.
  • Zhang C-S, Hawley SA, Zong Y, et al. Fructose-1, 6-bisphosphate and aldolase mediate glucose sensing by AMPK. Nature. 2017;548(7665):112–116.
  • Supek F, Supekova L, Mandiyan S, et al. A novel accessory subunit for vacuolar H (+)-ATPase from chromaffin granules. J Biol Chem. 1994;269(39):24102–24106.
  • Clissold SP, Edwards C. Acarbose. Drugs. 1988;35(3):214–243.
  • Holman RR, Cull CA, Turner RC. A randomized double-blind trial of acarbose in type 2 diabetes shows improved glycemic control over 3 years (UK prospective diabetes study 44). Diabetes Care. 1999;22(6):960–964.
  • Mo D, Liu S, Ma H, et al. Effects of acarbose and metformin on the inflammatory state in newly diagnosed type 2 diabetes patients: a one-year randomized clinical study. Drug Des Devel Ther. 2019;13:2769–2776.
  • Mishra AK, Dingli D. Metformin inhibits IL-6 signaling by decreasing IL-6R expression on multiple myeloma cells. Leukemia. 2019;33(11):2695–2709.
  • Cangoz S, Chang YY, Chempakaseril S, et al. The kidney as a new target for antidiabetic drugs: SGLT 2 inhibitors. J Clin Pharm Ther. 2013;38(5):350–359.
  • Plosker GL. Dapagliflozin. Drugs. 2012;72(17):2289–2312.
  • Kabel AM, Arab HH, Abd Elmaaboud MA. Effect of dapagliflozin and/or L‐arginine on solid tumor model in mice: the interaction between nitric oxide, transforming growth factor‐beta 1, autophagy, and apoptosis. Fundam Clin Pharmacol. 2021;35(6):968–978.
  • Kitade H, Sawamoto K, Nagashimada M, et al. CCR5 plays a critical role in obesity-induced adipose tissue inflammation and insulin resistance by regulating both macrophage ­recruitment and M1/M2 status. Diabetes. 2012;61(7):1680–1690.
  • Dus M, Ai M, Suh GS. Taste-independent nutrient selection is mediated by a brain-specific Na+/solute co-transporter in drosophila. Nat Neurosci. 2013;16(5):526–528.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.