287
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

EpCAM aptamer activated 5-FU-loaded PLGA nanoparticles in CRC treatment; in vitro and in vivo study

, , ORCID Icon, & ORCID Icon
Pages 296-309 | Received 15 Jun 2022, Accepted 13 Nov 2022, Published online: 27 Nov 2022

References

  • Bray F, Ferlay J, Soerjomataram I, et al. GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.
  • Nalli M, Puxeddu M, La Regina G, et al. Emerging therapeutic agents for colorectal cancer. Molecules. 2021;26(24):7463.
  • Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66(1):7–30.
  • Gharib A, Komaki A, Manoochehri Khoshinani H, et al. Intrahippocampal 5-HT1A receptor antagonist inhibits the improving effect of low-frequency stimulation on memory impairment in kindled rats. Brain Res Bull. 2019;148:109–117.
  • Manoochehri H, Sheykhhasan M, Samadi P, et al. System biological and experimental validation of miRNAs target genes involved in colorectal cancer radiation response. Gene Rep. 2019;17:100540.
  • Manoochehri H, Asadi S, Tanzadehpanah H, et al. CDC25A is strongly associated with colorectal cancer stem cells and poor clinical outcome of patients. Gene Rep. 2021;25:101415.
  • Zaniboni A. Adjuvant chemotherapy in colorectal cancer with high-dose leucovorin and fluorouracil: impact on disease-free survival and overall survival. J Clin Oncol. 1997;15(6):2432–2441.
  • Rosello S, Papaccio F, Roda D, et al. The role of chemotherapy in localized and locally advanced rectal cancer: a systematic revision. Cancer Treat Rev. 2018;63:156–171.
  • Manoochehri H, Jalali A, Tanzadehpanah H, et al. Identification of key gene targets for sensitizing colorectal cancer to chemoradiation: an integrative network analysis on multiple transcriptomics data. J Gastrointest Cancer. 2022;53(3):649–668.
  • Xie P, Mo J-L, Liu J-H, et al. Pharmacogenomics of 5-fluorouracil in colorectal cancer: review and update. Cell Oncol (Dordr). 2020;43(6):989–1001.
  • Hongsa N, Thinbanmai T, Luesakul U, et al. A novel modified chitosan/collagen coated-gold nanoparticles for 5-fluorouracil delivery: synthesis, characterization, in vitro drug release studies, anti-inflammatory activity and in vitro cytotoxicity assay. Carbohydr Polym. 2022;277:118858.
  • Duman FD, Akkoc Y, Demirci G, et al. Bypassing pro-survival and resistance mechanisms of autophagy in EGFR-positive lung cancer cells by targeted delivery of 5FU using theranostic Ag 2 S quantum dots. J Mater Chem B. 2019;7(46):7363–7376.
  • Samy M, Abd El-Alim SH, Rabia AEG, et al. Formulation, characterization and in vitro release study of 5-fluorouracil loaded chitosan nanoparticles. Int J Biol Macromol. 2020;156:783–791.
  • Chen Z, Wu C, Zhang Z, et al. Synthesis, functionalization, and nanomedical applications of functional magnetic nanoparticles. Chin Chem Lett. 2018;29(11):1601–1608.
  • Aydin NE. Effect of temperature on drug release: production of 5-FU-encapsulated hydroxyapatite-gelatin polymer composites via spray drying and analysis of in vitro kinetics. Int J Polym Sci. 2020;2020:1–13.
  • Ershadi N, Safaiee R, Golshan M. Functionalized (4, 0) or (8, 0) SWCNT as novel carriers of the anticancer drug 5-FU; a first-principle investigation. Appl Surf Sci. 2021;536:147718.
  • Youssof AME, Alanazi FK, Salem-Bekhit MM, et al. Bacterial ghosts carrying 5-fluorouracil: a novel biological carrier for targeting colorectal cancer. AAPS PharmSciTech. 2019;20(2):1–12.
  • Scavo MP, Cutrignelli A, Depalo N, et al. Effectiveness of a controlled 5-FU delivery based on FZD10 antibody-conjugated liposomes in colorectal cancer in vitro models. Pharmaceutics. 2020;12(7):650.
  • Arias JL. Novel strategies to improve the anticancer action of 5-fluorouracil by using drug delivery systems. Molecules. 2008;13(10):2340–2369.
  • Danhier F, Ansorena E, Silva JM, et al. PLGA-based nanoparticles: an overview of biomedical applications. J Control Release. 2012;161(2):505–522.
  • Bose RJ, Lee S-H, Park H. Lipid-based surface engineering of PLGA nanoparticles for drug and gene delivery applications. Biomater Res. 2016;20(1):1–9.
  • Hu C-MJ, Zhang L, Aryal S, et al. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc Natl Acad Sci USA. 2011;108(27):10980–10985.
  • Bose RJC, Ahn J-C, Yoshie A, et al. Preparation of cationic lipid layered PLGA hybrid nanoparticles for gene delivery. J Control Release. 2015;213:e92–e93.
  • El-Hammadi MM, Delgado ÁV, Melguizo C, et al. Folic acid-decorated and PEGylated PLGA nanoparticles for improving the antitumour activity of 5-fluorouracil. Int J Pharm. 2017;516(1–2):61–70.
  • Guimarães PPG, Oliveira SR, de Castro Rodrigues G, et al. Development of sulfadiazine-decorated PLGA nanoparticles loaded with 5-fluorouracil and cell viability. Molecules. 2015;20(1):879–899.
  • Liu P, Wang H, Wang Q, et al. cRGD conjugated mPEG-PLGA-PLL nanoparticles for SGC-7901 gastric cancer cells-targeted delivery of fluorouracil. J Nanosci Nanotechnol. 2012;12(6):4467–4471.
  • Souza NC, de Oliveira Nascimento EN, de Oliveira IB, et al. Anti-inflammatory and antixidant properties of blend formulated with compounds of malpighia emarginata DC (acerola) and Camellia sinensis L.(green tea) in lipopolysaccharide-stimulated RAW 264.7 macrophages. Biomed Pharmacother. 2020;128:110277.
  • Liang B, Shahbaz M, Wang Y, et al. Integrinβ6-targeted immunoliposomes mediate tumor-specific drug delivery and enhance therapeutic efficacy in colon carcinoma. Clin Cancer Res. 2015;21(5):1183–1195.
  • Bhattacharya S. Anti-EGFR-mAb and 5-Fluorouracil conjugated polymeric nanoparticles for colorectal cancer. Recent Pat Anticancer Drug Discov. 2021;16(1):84–100.
  • Fu Z, Xiang J. Aptamer-functionalized nanoparticles in targeted delivery and cancer therapy. Int J Mol Sci. 2020;21(23):9123.
  • Song Y, Zhu Z, An Y, et al. Selection of DNA aptamers against epithelial cell adhesion molecule for cancer cell imaging and circulating tumor cell capture. Anal Chem. 2013;85(8):4141–4149.
  • Manoochehri H, Jalali A, Tanzadehpanah H, et al. Aptamer-conjugated nanoliposomes containing COL1A1 siRNA sensitize CRC cells to conventional chemotherapeutic drugs. Colloids Surf B Biointerfaces. 2022;218:112714.
  • Sanna V, Pintus G, Bandiera P, et al. Development of polymeric microbubbles targeted to prostate-specific membrane antigen as prototype of novel ultrasound contrast agents. Mol Pharm. 2011;8(3):748–757.
  • Cheng J, Teply BA, Sherifi I, et al. Formulation of functionalized PLGA–PEG nanoparticles for in vivo targeted drug delivery. Biomaterials. 2007;28(5):869–876.
  • Crucho CI, Barros MT. Formulation of functionalized PLGA polymeric nanoparticles for targeted drug delivery. Polymer. 2015;68:41–46.
  • Li H, Shi L, Sun D-E, et al. Fluorescence resonance energy transfer biosensor between upconverting nanoparticles and palladium nanoparticles for ultrasensitive CEA detection. Biosens Bioelectron. 2016;86:791–798.
  • Brody JR, Calhoun ES, Gallmeier E, et al. Ultra-fast high-resolution agarose electrophoresis of DNA and RNA using low-molarity conductive media. Biotechniques. 2004;37(4):598–602.
  • Jung SH, Lim DH, Jung SH, et al. Amphotericin B-entrapping lipid nanoparticles and their in vitro and in vivo characteristics. Eur J Pharm Sci. 2009;37(3–4):313–320.
  • Mota AH, Direito R, Carrasco MP, et al. Combination of hyaluronic acid and PLGA particles as hybrid systems for viscosupplementation in osteoarthritis. Int J Pharm. 2019;559:13–22.
  • Kong L, Wang X, Zhang K, et al. Gypenosides synergistically enhances the anti-tumor effect of 5-fluorouracil on colorectal cancer in vitro and in vivo: a role for oxidative stress-mediated DNA damage and p53 activation. PLoS One. 2015;10(9):e0137888.
  • McGill MR, Sharpe MR, Williams CD, et al. The mechanism underlying acetaminophen-induced hepatotoxicity in humans and mice involves mitochondrial damage and nuclear DNA fragmentation. J Clin Invest. 2012;122(4):1574–1583.
  • Zhang B, Sai Lung P, Zhao S, et al. Shape dependent cytotoxicity of PLGA-PEG nanoparticles on human cells. Sci Rep. 2017;7(1):1–8.
  • Song X, You J, Shao H, et al. Effects of surface modification of As2O3-loaded PLGA nanoparticles on its anti-liver cancer ability: an in vitro and in vivo study. Colloids Surf B. 2018;169:289–297.
  • Alam N, Koul M, Mintoo MJ, et al. Development and characterization of hyaluronic acid modified PLGA based nanoparticles for improved efficacy of cisplatin in solid tumor. Biomed Pharmacother. 2017;95:856–864.
  • Yang J, Zhang R-N, Liu D-J, et al. Laser trapping/confocal raman spectroscopic characterization of PLGA-PEG nanoparticles. Soft Matter. 2018;14(40):8090–8094.
  • Liu Y, Hui Y, Ran R, et al. Synergetic combinations of dual-targeting ligands for enhanced in vitro and in vivo tumor targeting. Adv Healthcare Mater. 2018;7(15):1800106.
  • Dai W, Wang X, Song G, et al. Combination antitumor therapy with targeted dual-nanomedicines. Adv Drug Deliv Rev. 2017;115:23–45.
  • Zhang K, Tang X, Zhang J, et al. PEG–PLGA copolymers: their structure and structure-influenced drug delivery applications. J Control Release. 2014;183:77–86.
  • Pretel E, Arias JL, Cabeza L, et al. Development of biomedical 5-fluorouracil nanoplatforms for Colon cancer chemotherapy: influence of process and formulation parameters. Int J Pharm. 2017;530(1-2):155–164.
  • Yu B, Tang C, Yin C. Enhanced antitumor efficacy of folate modified amphiphilic nanoparticles through co-delivery of chemotherapeutic drugs and genes. Biomaterials. 2014;35(24):6369–6378.
  • Liu J, Li M, Luo Z, et al. Design of nanocarriers based on complex biological barriers in vivo for tumor therapy. Nano Today. 2017;15:56–90.
  • Ding W, Wang F, Zhang J, et al. A novel local anti-colorectal cancer drug delivery system: negative lipidoid nanoparticles with a passive target via a size-dependent pattern. Nanotechnology. 2013;24(37):375101.
  • Patil S, Sandberg A, Heckert E, et al. Protein adsorption and cellular uptake of cerium oxide nanoparticles as a function of zeta potential. Biomaterials. 2007;28(31):4600–4607.
  • Bermejo JF, Ortega P, Chonco L, et al. Water-soluble carbosilane dendrimers: synthesis biocompatibility and complexation with oligonucleotides; evaluation for medical applications. Chemistry. 2007;13(2):483–495.
  • Mu L, Feng S-S. Vitamin E TPGS used as emulsifier in the solvent evaporation/extraction technique for fabrication of polymeric nanospheres for controlled release of paclitaxel (taxol®). J Control Release. 2002;80(1-3):129–144.
  • Öcal H, Arıca-Yegin B, Vural İ, et al. 5-Fluorouracil-loaded PLA/PLGA PEG–PPG–PEG polymeric nanoparticles: formulation, in vitro characterization and cell culture studies. Drug Dev Ind Pharm. 2014;40(4):560–567.
  • Yoo J-W, Chambers E, Mitragotri S. Factors that control the circulation time of nanoparticles in blood: challenges, solutions and future prospects. Curr Pharm Des. 2010;16(21):2298–2307.
  • Fang C, Shi B, Pei Y-Y, et al. In vivo tumor targeting of tumor necrosis factor-α-loaded stealth nanoparticles: effect of MePEG molecular weight and particle size. Eur J Pharm Sci. 2006;27(1):27–36.
  • Wan S, Zhang L, Quan Y, et al. Resveratrol-loaded PLGA nanoparticles: enhanced stability, solubility and bioactivity of resveratrol for non-alcoholic fatty liver disease therapy. R Soc Open Sci. 2018;5(11):181457.
  • Yadav AK, Agarwal A, Jain S, et al. Chondroitin sulphate decorated nanoparticulate carriers of 5-fluorouracil: development and in vitro characterization. J Biomed Nanotechnol. 2010;6(4):340–350.
  • Kishimoto S, Kawazoe Y, Ikeno M, et al. Continuous exposure to low-dose cisplatin and apoptosis. Biol Pharm Bull. 2005;28(10):1954–1957.
  • Alibolandi M, Ramezani M, Sadeghi F, et al. Epithelial cell adhesion molecule aptamer conjugated PEG–PLGA nanopolymersomes for targeted delivery of doxorubicin to human breast adenocarcinoma cell line in vitro. Int J Pharm. 2015;479(1):241–251.
  • Jiang B. Aerobic glycolysis and high level of lactate in cancer metabolism and microenvironment. Genes Dis. 2017;4(1):25–27.
  • Vandghanooni S, Eskandani M, Barar J, et al. AS1411 aptamer-decorated cisplatin-loaded poly (lactic-co-glycolic acid) nanoparticles for targeted therapy of miR-21-inhibited ovarian cancer cells. Nanomedicine (Lond). 2018;13(21):2729–2758.
  • Hanafi-Bojd MY, Moosavian Kalat SA, Taghdisi SM, et al. MUC1 aptamer-conjugated mesoporous silica nanoparticles effectively target breast cancer cells. Drug Dev Ind Pharm. 2018;44(1):13–18.
  • Macdonald J, Henri J, Goodman L, et al. Development of a bifunctional aptamer targeting the transferrin receptor and epithelial cell adhesion molecule (EpCAM) for the treatment of brain cancer metastases. ACS Chem Neurosci. 2017;8(4):777–784.
  • Zhao Y, Xu J, Le VM, et al. EpCAM aptamer-functionalized cationic liposome-based nanoparticles loaded with miR-139-5p for targeted therapy in colorectal cancer. Mol Pharm. 2019;16(11):4696–4710.
  • Shang X, Guan Z, Zhang S, et al. Predicting the aptamer SYL3C–EpCAM complex’s structure with the martini-based simulation protocol. Phys Chem Chem Phys. 2021;23(12):7066–7079.
  • Zhu L, Feng X, Yang S, et al. Colorimetric detection of immunomagnetically captured rare number CTCs using mDNA-wrapped single-walled carbon nanotubes. Biosens Bioelectron. 2021;172:112780.
  • Mashreghi M, Zamani P, Moosavian SA, et al. Anti-Epcam aptamer (Syl3c)-functionalized liposome for targeted delivery of doxorubicin: in vitro and in vivo antitumor studies in mice bearing C26 Colon carcinoma. Nanoscale Res Lett. 2020;15(1):1–13.
  • Moitra P, Misra SK, Kumar K, et al. Cancer stem Cell-Targeted gene delivery mediated by Aptamer-Decorated pH-Sensitive nanoliposomes. ACS Biomater Sci Eng. 2021;7(6):2508–2519.
  • Zheng T, Zhang Q, Feng S, et al. Robust nonenzymatic hybrid nanoelectrocatalysts for signal amplification toward ultrasensitive electrochemical cytosensing. J Am Chem Soc. 2014;136(6):2288–2291.
  • Castle JC, Loewer M, Boegel S, et al. Immunomic, genomic and transcriptomic characterization of CT26 colorectal carcinoma. BMC Genomics. 2014;15(1):190–112.
  • Li L, Xiang D, Shigdar S, et al. Epithelial cell adhesion molecule aptamer functionalized PLGA-lecithin-curcumin-PEG nanoparticles for targeted drug delivery to human colorectal adenocarcinoma cells. Int J Nanomedicine. 2014;9:1083–1096.
  • Zhang N, Yin Y, Xu S-J, et al. 5-Fluorouracil: mechanisms of resistance and reversal strategies. Molecules. 2008;13(8):1551–1569.
  • Xiang Y, Huang W, Huang C, et al. Facile fabrication of nanoparticles with dual-targeting ligands for precise hepatocellular carcinoma therapy in vitro and in vivo. Mol Pharm. 2020;17(9):3223–3235.
  • Martínez-Gutierrez F, Thi EP, Silverman JM, et al. Antibacterial activity, inflammatory response, coagulation and cytotoxicity effects of silver nanoparticles. Nanomedicine. 2012;8(3):328–336.
  • Wang B, Feng W, Wang M, et al. Acute toxicological impact of nano-and submicro-scaled zinc oxide powder on healthy adult mice. J Nanopart Res. 2008;10(2):263–276.
  • Wang C, Huo X, Gao L, et al. Hepatoprotective effect of carboxymethyl pachyman in fluorouracil-treated CT26-bearing mice. Molecules. 2017;22(5):756.
  • Xu J, Zhang G, Luo X, et al. Co-delivery of 5-fluorouracil and miRNA-34a mimics by host-guest self-assembly nanocarriers for efficacious targeted therapy in colorectal cancer patient-derived tumor xenografts. Theranostics. 2021;11(5):2475–2489.
  • Kašuba V, Micek V, Pizent A, et al. DNA damage in kidney and parenchymal and non-parenchymal liver cells of adult wistar rats after subchronic oral treatment with tembotrione. Environ Sci Pollut Res Int. 2020;27(2):1800–1807.
  • Xu M, Chen Q, Li J, et al. Dendritic cell-derived exosome-entrapped fluorouracil can enhance its anti-colon cancer effect. J Buon. 2020;25(3):1413–1422.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.