179
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Biomimetic graphene oxide quantum dots nanoparticles targeted photothermal-chemotherapy for gastric cancer

, , , , , & show all
Pages 320-333 | Received 29 May 2022, Accepted 15 Dec 2022, Published online: 17 Jan 2023

References

  • Thrift AP, El-Serag HB. Burden of gastric cancer. Clin Gastroenterol Hepatol. 2020;18(3):534–542.
  • Joshi SS, Badgwell BD. Current treatment and recent progress in gastric cancer. CA Cancer J Clin. 2021;71(3):264–279.
  • Smyth EC, Nilsson M, Grabsch HI, et al. Gastric cancer. Lancet. 2020;396(10251):635–648.
  • Evans JP, Winiarski BK, Sutton PA, et al. PTH-272 modulation of NRF2 alters the responsiveness of colorectal cancer cells to irinotecan. Gut. 2015;64(Suppl 1):A531.1–A531. (
  • Cai Y, Si W, Huang W, et al. Organic dye based nanoparticles for cancer phototheranostics. Small. 2018;14(25):e1704247.
  • Liu B, Wang W, Fan J, et al. RBC membrane camouflaged prussian blue nanoparticles for gamabutolin loading and combined chemo/photothermal therapy of breast cancer. Biomaterials. 2019;217:119301.
  • Long Y, Wu X, Li Z, et al. PEGylated WS2 nanodrug system with erythrocyte membrane coating for chemo/photothermal therapy of cervical cancer. Biomater Sci. 2020;8(18):5088–5105.
  • Zhang X, Xi Z, Machuki JO, et al. Gold cube-in-Cube based oxygen nanogenerator: a theranostic nanoplatform for modulating tumor microenvironment for precise Chemo-Phototherapy and multimodal imaging. ACS Nano. 2019;13(5):5306–5325.
  • Wang Y, Zhao J, Chen Z, et al. Construct of MoSe2/Bi2Se3 nanoheterostructure: multimodal CT/PT imaging-guided PTT/PDT/chemotherapy for cancer treating. Biomaterials. 2019;217:119282.
  • Gamal-Eldeen AM, El-Daly SM, Borai IH, et al. Photodynamic therapeutic effect of indocyanine green entrapped in polymeric nanoparticles and their anti-EGFR-conjugate in skin cancer in CD1 mice. Photodiagn Photodyn Ther. 2013;10(4):446–459.
  • Jian WH, Yu TW, Chen CJ, et al. Indocyanine green-encapsulated hybrid polymeric nanomicelles for photothermal cancer therapy. Langmuir. 2015;31(22):6202–6210.
  • Zheng M, Zhao P, Luo Z, et al. Robust ICG theranostic nanoparticles for folate targeted cancer imaging and highly effective photothermal therapy. ACS Appl Mater Interfaces. 2014;6(9):6709–6716.
  • Sun J, Xing F, Braun J, et al. Progress of phototherapy applications in the treatment of bone cancer. Int J Mol Sci. 2021;22(21):11354.
  • Yu Z, Li T, Wang C, et al. Gamabufotalin triggers c-Myc degradation via induction of WWP2 in multiple myeloma cells. Oncotarget. 2016;7(13):15725–15737.
  • Zhang L, Yu Z, Wang Y, et al. Quantitative proteomics reveals molecular mechanism of gamabufotalin and its potential inhibition on Hsp90 in lung cancer. Oncotarget. 2016;7(47):76551–76564.
  • Yuan B, Shimada R, Xu K, et al. Multiple cytotoxic effects of gamabufotalin against human glioblastoma cell line U-87. Chem Biol Interact. 2019;314:108849.
  • Conde J, Oliva N, Zhang Y, et al. Local triple-combination therapy results in tumour regression and prevents recurrence in a Colon cancer model. Nat Mater. 2016;15(10):1128–1138.
  • Zhang Y, Tan YW, Stormer HL, et al. Experimental observation of the quantum hall effect and berry’s phase in graphene. Nature. 2005;438(7065):201–204.
  • Li D, Müller MB, Gilje S, et al. Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol. 2008;3(2):101–105.
  • Hu D, Zhang J, Gao G, et al. Indocyanine green-loaded polydopamine-reduced graphene oxide nanocomposites with amplifying photoacoustic and photothermal effects for cancer theranostics. Theranostics. 2016;6(7):1043–1052.
  • Georgakilas V, Tiwari JN, Kemp KC, et al. Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications. Chem Rev. 2016;116(9):5464–5519.
  • Yeh TF, Huang WL, Chung CJ, et al. Elucidating quantum confinement in graphene oxide dots based on excitation-wavelength-Independent photoluminescence. J Phys Chem Lett. 2016;7(11):2087–2092.
  • Li Y, Zhao Y, Cheng H, et al. Nitrogen-doped graphene quantum dots with oxygen-rich functional groups. J Am Chem Soc. 2012;134(1):15–18.
  • Li J, Zhang X, Jiang J, et al. Systematic assessment of the toxicity and potential mechanism of graphene derivatives in vitro and in vivo. Toxicol Sci. 2019;167(1):269–281.
  • Rao L, Bu LL, Xu JH, et al. Red blood cell membrane as a biomimetic nanocoating for prolonged circulation time and reduced accelerated blood clearance. Small. 2015;11(46):6225–6236.
  • Dehaini D, Wei X, Fang RH, et al. Erythrocyte-Platelet hybrid membrane coating for enhanced nanoparticle functionalization. Adv Mater. 2017;29(16):1606209.
  • Zhu JY, Zheng DW, Zhang MK, et al. Preferential cancer cell Self-Recognition and tumor Self-Targeting by coating nanoparticles with homotypic cancer cell membranes. Nano Lett. 2016;16(9):5895–5901.
  • Fan J, Liu B, Long Y, et al. Sequentially-targeted biomimetic nano drug system for triple-negative breast cancer ablation and lung metastasis inhibition. Acta Biomater. 2020;113:554–569.
  • Liang J, Wang C, Fan J, et al. Hybrid membrane-camouflaged hollow prussian blue nanoparticles for shikonin loading and combined chemo/photothermal therapy of metastatic TNBC. Mater Today Adv. 2022;14:100245.
  • Ukai S, Honma R, Sakamoto N, et al. Molecular biological analysis of 5-FU-resistant gastric cancer organoids; KHDRBS3 contributes to the attainment of features of cancer stem cell. Oncogene. 2020;39(50):7265–7278.
  • Choi SY, Baek SH, Chang SJ, et al. Synthesis of upconversion nanoparticles conjugated with graphene oxide quantum dots and their use against cancer cell imaging and photodynamic therapy. Biosens Bioelectron. 2017;93:267–273.
  • Liu Y, Zou Y, Feng C, et al. Correction to charge conversional biomimetic nanocomplexes as a multifunctional platform for boosting orthotopic glioblastoma RNAi therapy. Nano Lett. 2021;21(22):9834.
  • Xu M, Zhu J, Wang F, et al. Improved in vitro and in vivo biocompatibility of graphene oxide through surface modification: poly(acrylic acid)-functionalization is superior to PEGylation. ACS Nano. 2016;10(3):3267–3281.
  • Luo L, Zeng F, Xie J, et al. A RBC membrane-camouflaged biomimetic nanoplatform for enhanced chemo-photothermal therapy of cervical cancer. J Mater Chem B. 2020;8(18):4080–4092.
  • Hu H, Chen J, Yang H, et al. Potentiating photodynamic therapy of ICG-loaded nanoparticles by depleting GSH with PEITC. Nanoscale. 2019;11(13):6384–6393.
  • Tang N, Shi L, Yu Z, et al. Gamabufotalin, a major derivative of bufadienolide, inhibits VEGF-induced angiogenesis by suppressing VEGFR-2 signaling pathway. Oncotarget. 2016;7(3):3533–3547.
  • He L, Nie T, Xia X, et al. Designing bioinspired 2D MoSe2 nanosheet for efficient photothermal㏕riggered cancer immunotherapy with reprogramming tumor〢ssociated macrophages. Adv Funct Mater. 2019;29(30):1901240.
  • Cai X, Liu X, Jiang J, et al. Molecular mechanisms, characterization methods, and utilities of nanoparticle biotransformation in nanosafety assessments. Small. 2020;16(36):e1907663.
  • Hoy SM. Patisiran: first global approval. Drugs. 2018;78(15):1625–1631.
  • Porcu EP, Salis A, Gavini E, et al. Indocyanine green delivery systems for tumour detection and treatments. Biotechnol Adv. 2016;34(5):768–789.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.