132
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Advancement in transporter-oriented nanoplatforms for cancer therapy

, , , , , , , , & show all
Pages 456-470 | Received 03 Dec 2022, Accepted 04 Mar 2023, Published online: 05 Apr 2023

References

  • Kondo E, Iioka H, Saito K. Tumor-homing peptide and its utility for advanced cancer medicine. Cancer Sci. 2021;112(6):2118–2125.
  • Liang M, Li L, Li L, et al. Nanotechnology in diagnosis and therapy of gastrointestinal cancer. World J Clin Cases. 2022;10(16):5146–5155.
  • Xue Y, Gao Y, Meng F, et al. Recent progress of nanotechnology-based theranostic systems in cancer treatments. Cancer Biol Med. 2021;18(2):336–351.
  • Caputo D, Pozzi D, Farolfi T, et al. Nanotechnology and pancreatic cancer management: state of the art and further perspectives. World J Gastrointestinal Oncol. 2021;13(4):231–237.
  • Hama M, Ishima Y, Chuang V, et al. Evidence for delivery of abraxane via a Denatured-Albumin transport system. ACS Appl Mater Interfaces. 2021;13(17):19736–19744.
  • Niu G, Cogburn B, Hughes J. Preparation and characterization of doxorubicin liposomes. Methods Mol Biol. 2010;624:211–219.
  • Keam B, Lee KW, Lee SH, et al. A phase II study of Genexol-PM and cisplatin as induction chemotherapy in locally advanced head and neck squamous cell carcinoma. Oncologist. 2019;24(6):751–751e231.
  • Chen K, Liu B, Yu B, et al. Advances in the development of aptamer drug conjugates for targeted drug delivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2017;9:e1438.
  • He F, Wen N, Xiao D, et al. Aptamer-based targeted drug delivery systems: current potential and challenges. Curr Med Chem. 2020;27(13):2189–2219.
  • Cadinoiu AN, Rata DM, Atanase LI, et al. Formulations based on drug loaded aptamer-conjugated liposomes as a viable strategy for the topical treatment of basal cell carcinoma-in vitro tests. Pharmaceutics. 2021;13(6):866.
  • Cheng Z, Li M, Dey R, et al. Nanomaterials for cancer therapy: current progress and perspectives. J Hematol Oncol. 2021;14(1):85.
  • Al-Lawati H, Aliabadi HM, Makhmalzadeh BS, et al. Nanomedicine for immunosuppressive therapy: achievements in pre-clinical and clinical research. Expert Opin Drug Deliv. 2018;15(4):397–418.
  • Zhang E, Xing R, Liu S, et al. Current advances in development of new docetaxel formulations. Expert Opin Drug Deliv. 2019;16(3):301–312.
  • Koppula P, Zhuang L, Gan B. Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy. Protein Cell. 2021;12(8):599–620.
  • Nigam SK. What do drug transporters really do. Nat Rev Drug Discov. 2015;14(1):29–44.
  • Petzinger E, Geyer J. Drug transporters in pharmacokinetics. Naunyn Schmiedebergs Arch Pharmacol. 2006;372(6):465–475.
  • König J, Müller F, Fromm MF. Transporters and drug-drug interactions: important determinants of drug disposition and effects. Pharmacol Rev. 2013;65(3):944–966.
  • Lin L, Yee SW, Kim RB, et al. SLC transporters as therapeutic targets: emerging opportunities. Nat Rev Drug Discov. 2015;14(8):543–560.
  • Zhang Y, Wang J. Targeting uptake transporters for cancer imaging and treatment. Acta Pharm Sin B. 2020;10(1):79–90.
  • Barbosa AM, Martel F. Targeting glucose transporters for breast cancer therapy: the effect of natural and synthetic compounds. Cancers (Basel). 2020;12(1):154.
  • Cha YJ, Kim ES, Koo JS. Amino acid transporters and glutamine metabolism in breast cancer. Int J Mol Sci. 2018;19:907.
  • Saito Y, Soga T. Amino acid transporters as emerging therapeutic targets in cancer. Cancer Sci. 2021;112(8):2958–2965.
  • Lv H, Wang C, Fang T, et al. Vitamin C preferentially kills cancer stem cells in hepatocellular carcinoma via SVCT-2. NPJ Precis Oncol. 2018;2:1.
  • Luo Q, Gong P, Sun M, et al. Transporter occluded-state conformation-induced endocytosis: amino acid transporter ATB(0,+)-mediated tumor targeting of liposomes for docetaxel delivery for hepatocarcinoma therapy. J Control Release. 2016;243:370–380.
  • Xiao W, Fu Q, Zhao Y, et al. Ascorbic acid-modified brain-specific liposomes drug delivery system with "lock-in" function. Chem Phys Lipids. 2019;224:104727.
  • Li J, Yang H, Zhang Y, et al. Choline derivate-modified doxorubicin loaded micelle for glioma therapy. ACS Appl Mater Interfaces. 2015;7(38):21589–21601.
  • Su H, Wang Y, Liu S, et al. Emerging transporter-targeted nanoparticulate drug delivery systems. Acta Pharm Sin B. 2019;9(1):49–58.
  • El-Gebali S, Bentz S, Hediger MA, et al. Solute carriers (SLCs) in cancer. Mol Aspects Med. 2013;34(2-3):719–734.
  • Liu X. SLC family transporters. Adv Exp Med Biol. 2019;1141:101–202.
  • Robey RW, Pluchino KM, Hall MD, et al. Revisiting the role of ABC transporters in multidrug-resistant cancer. Nat Rev Cancer. 2018;18(7):452–464.
  • Wang JQ, Wu ZX, Yang Y, et al. ATP-binding cassette (ABC) transporters in cancer: a review of recent updates. J Evidence Based Med. 2021;14(3):232–256.
  • Amawi H, Sim HM, Tiwari AK, et al. ABC Transporter-Mediated Multidrug-Resistant cancer. Adv Exp Med Biol. 2019;1141:549–580.
  • Monica S, Hirayama Bruce A, Chiara G, et al. Revisiting the physiological roles of SGLTs and GLUTs using positron emission tomography in mice. J Physiol. 2016;594:4425–4438.
  • Liberti MV, Locasale JW. The Warburg effect: how does it benefit cancer cells. Trends Biochem Sci. 2016;41(3):211–218.
  • Su X, Li R, Kong K, et al. Transport of haloacids across biological membranes. BBA - Biomembranes. 2016;1858:3061–3070.
  • Mueckler M, Thorens B. The SLC2 (GLUT) family of ­membrane transporters. Mol Aspects Med. 2013;34(2–3):121–138.
  • Ancey PB, Contat C, Meylan E. Glucose transporters in cancer - from tumor cells to the tumor microenvironment. Febs J. 2018;285(16):2926–2943.
  • Wright EM. SGLT2 and cancer. Pflugers Arch. 2020;472(9):1407–1414.
  • Wright EM. Correction to: SGLT2 and cancer. Pflugers Arch. 2021;473(11):1807.
  • Cooper R, Sarioğlu S, Sökmen S, et al. Glucose transporter-1 (GLUT-1): a potential marker of prognosis in rectal carcinoma. Br J Cancer. 2003;89(5):870–876.
  • Kanjanapan Y, Deb S, Young RJ, et al. Glut-1 expression in small cervical biopsies is prognostic in cervical cancers treated with chemoradiation. Clin Transl Radiat Oncol. 2017;2:53–58.
  • Kunkel M, Moergel M, Stockinger M, et al. Overexpression of GLUT-1 is associated with resistance to radiotherapy and adverse prognosis in squamous cell carcinoma of the oral cavity. Oral Oncol. 2007;43(8):796–803.
  • Quan L, Ohgaki R, Hara S, et al. Amino acid transporter LAT1 in tumor-associated vascular endothelium promotes angiogenesis by regulating cell proliferation and VEGF-A-dependent mTORC1 activation. J Exp Clin Cancer Res. 2020;39(1):266.
  • Häfliger P, Charles RP. The L-Type amino acid transporter LAT1-An emerging target in cancer. Int J Mol Sci. 2019;20:2428.
  • Wang Q, Holst J. L-type amino acid transport and cancer: targeting the mTORC1 pathway to inhibit neoplasia. Am J Cancer Res. 2015;5:1281–1294.
  • Wiriyasermkul P, Moriyama S, Kongpracha P[, et al. Drug discovery targeting an amino acid transporter for diagnosis and therapy. ]. Yakugaku Zasshi. 2021;141(4):501–510.
  • van Geldermalsen M, Wang Q, Nagarajah R, et al. ASCT2/SLC1A5 controls glutamine uptake and tumour growth in triple-negative basal-like breast cancer. Oncogene. 2016;35(24):3201–3208.
  • Scalise M, Pochini L, Console L, et al. The human SLC1A5 (ASCT2) amino acid transporter: from function to structure and role in cell biology. Front Cell Dev Biol. 2018;6:96.
  • Zhou P, Liang X, Zhou C, et al. Glutamine-β-cyclodextrin for targeted doxorubicin delivery to triple-negative breast cancer tumors via the transporter ASCT2. J Mater Chem B. 2019;7(35):5363–5375.
  • Scopelliti AJ, Font J, Vandenberg RJ, et al. Structural characterisation reveals insights into substrate recognition by the glutamine transporter ASCT2/SLC1A5. Nat Commun. 2018;9(1):38.
  • Wang W, Pan H, Ren F, et al. Targeting ASCT2-mediated glutamine metabolism inhibits proliferation and promotes apoptosis of pancreatic cancer cells. Biosci Rep. 2022;42:BSR20212171.
  • Li S, Zhou Q, Liu W, et al. Targeting SLC1A5 blocks cell proliferation through inhibition of mTORC1 in arsenite-treated human uroepithelial cells. Toxicol Lett. 2021;345:1–11.
  • Wang Q, Hardie RA, Hoy AJ, et al. Targeting ASCT2-mediated glutamine uptake blocks prostate cancer growth and tumour development. J Pathol. 2015;236(3):278–289.
  • Sloan JL, Mager S. Cloning and functional expression of a human Na(+) and Cl(-)-dependent neutral and cationic amino acid transporter B(0+). J Biol Chem. 1999;274(34):23740–23745.
  • Ganapathy ME, Ganapathy V. Amino acid transporter ATB0,+ as a delivery system for drugs and prodrugs. Curr Drug Targets Immune Endocr Metabol Disord. 2005;5(4):357–364.
  • Hatanaka T, Haramura M, Fei YJ, et al. Transport of amino acid-based prodrugs by the Na+- and Cl(-) -coupled amino acid transporter ATB0,+ and expression of the transporter in tissues amenable for drug delivery. J Pharmacol Exp Ther. 2004;308(3):1138–1147.
  • Hatanaka T, Nakanishi T, Huang W, et al. Na+ - and Cl- -coupled active transport of nitric oxide synthase inhibitors via amino acid transport system B0,+. J Clin Invest. 2001;107(8):1035–1043.)
  • Sikder M, Yang S, Ganapathy V, et al. The Na(+)/Cl(-)-coupled, broad-specific, amino acid transporter SLC6A14 (ATB(0,+)): emerging roles in multiple diseases and therapeutic potential for treatment and diagnosis. Aaps J. 2018;20(1):12.
  • Gupta N, Miyauchi S, Martindale RG, et al. Upregulation of the amino acid transporter ATB0,+ (SLC6A14) in colorectal cancer and metastasis in humans. Biochim Biophys Acta. 2005;1741(1-2):215–223.
  • Coothankandaswamy V, Cao S, Xu Y, et al. Amino acid transporter SLC6A14 is a novel and effective drug target for pancreatic cancer. Br J Pharmacol. 2016;173:3292–3306.
  • Boswell-Casteel RC, Hays FA. Equilibrative nucleoside transporters-A review. Nucleosides Nucleotides Nucleic Acids. 2017;36:7–30.
  • Nishimura T, Sano Y, Takahashi Y, et al. Quantification of ENT1 and ENT2 proteins at the placental barrier and contribution of these transporters to ribavirin uptake. J Pharm Sci. 2019;108:3917–3922.
  • Senyavina NV, Gerasimenko TN, Fomicheva KA, et al. Localization and expression of nucleoside transporters ENT1 and ENT2 in polar cells of intestinal epithelium. Bull Exp Biol Med. 2016;160:771–774.
  • Carter CJ, Mekkawy AH, Morris DL. Role of human nucleoside transporters in pancreatic cancer and chemoresistance. World J Gastroenterol. 2021;27:6844–6860.
  • Adema AD, Smid K, Losekoot N, et al. Metabolism and accumulation of the lipophilic deoxynucleoside analogs elacytarabine and CP-4126. Invest New Drugs. 2012;30:1908–1916.
  • Dueregger A, Guggenberger F, Barthelmes J, et al. Attenuation of nucleoside and anti-cancer nucleoside analog drug uptake in prostate cancer cells by cimicifuga racemosa extract BNO-1055. Phytomedicine. 2013;20:1306–1314.
  • Miller SR, Hau RK, Jilek JL, et al. Nucleoside reverse transcriptase inhibitor interaction with human equilibrative nucleoside transporters 1 and 2. Drug Metab Dispos. 2020;48:603–612.
  • Wei CW, Lee CY, Lee DJ, et al. Equilibrative nucleoside transporter 3 regulates T cell homeostasis by coordinating lysosomal function with nucleoside availability. Cell Rep. 2018;23:2330–2341.
  • Uhlén M, Fagerberg L, Hallström BM, et al. Proteomics. Tissue-based map of the human proteome. Science. 2015;347(6220):1260419.
  • Engel K, Wang J. Interaction of organic cations with a newly identified plasma membrane monoamine transporter. Mol Pharmacol. 2005;68(5):1397–1407.
  • Pastor-Anglada M, Cano-Soldado P, Errasti-Murugarren E, et al. SLC28 genes and concentrative nucleoside transporter (CNT) proteins. Xenobiotica. 2008;38:972–994.
  • Koczor CA, Torres RA, Lewis W. The role of transporters in the toxicity of nucleoside and nucleotide analogs. Expert Opin Drug Metab Toxicol. 2012;8:665–676.
  • Yamamoto T, Kuniki K, Takekuma Y, et al. Ribavirin uptake by cultured human choriocarcinoma (BeWo) cells and Xenopus laevis oocytes expressing recombinant plasma membrane human nucleoside transporters. Eur J Pharmacol. 2007;557(1):1–8.
  • Mackey JR, Yao SY, Smith KM, et al. Gemcitabine transport in xenopus oocytes expressing recombinant plasma membrane mammalian nucleoside transporters. J Natl Cancer Inst. 1999;91(21):1876–1881.
  • Cano-Soldado P, Lorráyoz IM, Molina-Arcas M, et al. Interaction of nucleoside inhibitors of HIV-1 reverse transcriptase with the concentrative nucleoside transporter-1 (SLC28A1). Antivir Ther. 2004;9:993–1002.
  • Choi MK, Kim MH, Maeng HJ, et al. Contribution of CNT1 and ENT1 to ribavirin uptake in human hepatocytes. Arch Pharm Res. 2015;38:904–913.
  • Wang Y, Wang Y, Qin Z, et al. The role of non-coding RNAs in ABC transporters regulation and their clinical implications of multidrug resistance in cancer. Expert Opin Drug Metab Toxicol. 2021;17:291–306.
  • Paproski RJ, Yao SY, Favis N, et al. Human concentrative nucleoside transporter 3 transfection with ultrasound and microbubbles in nucleoside transport deficient HEK293 cells greatly increases gemcitabine uptake. PLoS One. 2013;8:e56423.
  • Zhang L, Dresser MJ, Gray AT, et al. Cloning and functional expression of a human liver organic cation transporter. Mol Pharmacol. 1997;51(6):913–921.
  • Ho RH, Kim RB. Transporters and drug therapy: implications for drug disposition and disease. Clin Pharmacol Ther. 2005;78:260–277.
  • Kijima H, Ueyama Y. Molecular mechanism of drug resistance in colorectal cancer. Nihon Rinsho. 2003;61(Suppl 7):303–309.
  • Sauna ZE, Kim IW, Ambudkar SV. Genomics and the mechanism of P-glycoprotein (ABCB1). J Bioenerg Biomembr. 2007;39:481–487.
  • van Gelder J, Deferme S, Naesens L, et al. Intestinal absorption enhancement of the ester prodrug tenofovir disoproxil fumarate through modulation of the biochemical barrier by defined ester mixtures. Drug Metab Dispos. 2002;30:924–930.
  • Shaik N, Giri N, Pan G, et al. P-glycoprotein-mediated active efflux of the anti-HIV1 nucleoside abacavir limits cellular accumulation and brain distribution. Drug Metab Dispos. 2007;35:2076–2085.
  • Nies AT, Keppler D. The apical conjugate efflux pump ABCC2 (MRP2). Pflugers Arch. 2007;453(5):643–659.
  • Keppler D. Uptake and efflux transporters for conjugates in human hepatocytes. Methods Enzymol. 2005;400:531–542.
  • Shipp LE, Hill RZ, Moy GW, et al. ABCC5 is required for cAMP-mediated hindgut invagination in sea urchin embryos. Development. 2015;142:3537–3548.
  • Liu X. Transporter-mediated drug-drug interactions and their significance. Adv Exp Med Biol. 2019;1141:241–291.
  • Sahi J, Sinz MW, Campbell S, et al. Metabolism and transporter-mediated drug-drug interactions of the endothelin-A receptor antagonist CI-1034. Chem Biol Interact. 2006;159(2):156–168.
  • Hanssen KM, Haber M, Fletcher JI. Targeting multidrug resistance-associated protein 1 (MRP1)-expressing cancers: beyond pharmacological inhibition. Drug Resist Updat. 2021;59:100795.
  • Lu JF, Pokharel D, Bebawy M. MRP1 and its role in anticancer drug resistance. Drug Metab Rev. 2015;47:406–419.
  • King KM, Damaraju VL, Vickers MF, et al. A comparison of the transportability, and its role in cytotoxicity, of clofarabine, cladribine, and fludarabine by recombinant human nucleoside transporters produced in three model expression systems. Mol Pharmacol. 2006;69(1):346–353.
  • Järvinen E, Deng F, Kidron H, et al. Efflux transport of estrogen glucuronides by human MRP2, MRP3, MRP4 and BCRP. J Steroid Biochem Mol Biol. 2018;178:99–107.
  • Jetter A, Kullak-Ublick GA. Drugs and hepatic transporters: a review. Pharmacol Res. 2020;154:104234.
  • Liu L, Liu X. Contributions of drug transporters to Blood-Placental barrier. Adv Exp Med Biol. 2019;1141:505–548.
  • Maeng HJ, Lee WJ, Jin QR, et al. Upregulation of COX-2 in the lung cancer promotes overexpression of multidrug resistance protein 4 (MRP4) via PGE2-dependent pathway. Eur J Pharm Sci. 2014;62:189–196.
  • He Z, Hu B, Tang L, et al. The overexpression of MRP4 is related to multidrug resistance in osteosarcoma cells. J Cancer Res Ther. 2015;11:18–23.
  • Meissner K, Kessler W, Meyer zu Schwabedissen HE, et al. Sepsis affects cardiac expression of multidrug resistance protein 5 (MRP5, ABCC5), an ABC-type CGMP export pump. Shock. 2007;28:564–569.
  • Reid G, Wielinga P, Zelcer N, et al. Characterization of the transport of nucleoside analog drugs by the human multidrug resistance proteins MRP4 and MRP5. Mol Pharmacol. 2003;63(5):1094–1103.
  • Chen J, Akhtari FS, Wagner MJ, et al. Pharmacogenetic analysis of the Model-Based pharmacokinetics of five anti-HIV drugs: how does this influence the effect of aging. Clin Transl Sci. 2018;11:226–236.
  • Rungtivasuwan K, Avihingsanon A, Thammajaruk N, et al. Influence of ABCC2 and ABCC4 polymorphisms on tenofovir plasma concentrations in thai HIV-infected patients. Antimicrob Agents Chemother. 2015;59:3240–3245.
  • Hijazi K, Cuppone AM, Smith K, et al. Expression of genes for drug transporters in the human female genital tract and modulatory effect of antiretroviral drugs. PLoS One. 2015;10:e0131405.
  • Zeng Q, Bai M, Li C, et al. Multiple drug transporters contribute to the placental transfer of emtricitabine. Antimicrob Agents Chemother. 2019;63:e00199–19.
  • Hira D, Terada T. BCRP/ABCG2 and high-alert medications: biochemical, pharmacokinetic, pharmacogenetic, and clinical implications. Biochem Pharmacol. 2018;147:201–210.
  • Russel FG, Koenderink JB, Masereeuw R. Multidrug resistance protein 4 (MRP4/ABCC4): a versatile efflux transporter for drugs and signalling molecules. Trends Pharmacol Sci. 2008;29:200–207.
  • Cole SP, Deeley RG. Transport of glutathione and glutathione conjugates by MRP1. Trends Pharmacol Sci. 2006;27:438–446.
  • Roundhill EA, Burchill SA. Detection and characterisation of multi-drug resistance protein 1 (MRP-1) in human mitochondria. Br J Cancer. 2012;106:1224–1233.
  • Yun UJ, Lee JH, Koo KH, et al. Lipid raft modulation by Rp1 reverses multidrug resistance via inactivating MDR-1 and SRC inhibition. Biochem Pharmacol. 2013;85:1441–1453.
  • Doyle LA, Yang W, Abruzzo LV, et al. A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc Natl Acad Sci USA. 1998;95(26):15665–15670.
  • Mao Q, Unadkat JD. Role of the breast cancer resistance protein (BCRP/ABCG2) in drug transport–an update. Aaps J. 2015;17:65–82.
  • Filia MF, Marchini T, Minoia JM, et al. Induction of ABCG2/BCRP restricts the distribution of zidovudine to the fetal brain in rats. Toxicol Appl Pharmacol. 2017;330:74–83.
  • Ceckova M, Reznicek J, Ptackova Z, et al. Role of ABC and solute carrier transporters in the placental transport of lamivudine. Antimicrob Agents Chemother. 2016;60:5563–5572.
  • Reznicek J, Ceckova M, Ptackova Z, et al. MDR1 and BCRP Transporter-Mediated Drug-Drug interaction between rilpivirine and abacavir and effect on intestinal absorption. Antimicrob Agents Chemother. 2017;61:e00837–17.
  • Arora S, Sharma D, Singh J. GLUT-1: an effective target to deliver Brain-Derived neurotrophic factor gene across the blood brain barrier. ACS Chem Neurosci. 2020;11:1620–1633.
  • Shao K, Ding N, Huang S, et al. Smart nanodevice combined tumor-specific vector with cellular microenvironment-triggered property for highly effective antiglioma therapy. ACS Nano. 2014;8:1191–1203.
  • Bhunia S, Vangala V, Bhattacharya D, et al. Large amino acid transporter 1 selective liposomes of l-DOPA functionalized amphiphile for combating glioblastoma. Mol Pharm. 2017;14:3834–3847.
  • Li L, Di X, Wu M, et al. Targeting tumor highly-expressed LAT1 transporter with amino acid-modified nanoparticles: toward a novel active targeting strategy in breast cancer therapy. Nanomedicine. 2017;13:987–998.
  • Luo Q, Yang B, Tao W, et al. ATB(0,+) transporter-mediated targeting delivery to human lung cancer cells via aspartate-modified docetaxel-loading stealth liposomes. Biomater Sci. 2017;5:295–304.
  • Kou L, Sun R, Xiao S, et al. OCTN2-targeted nanoparticles for oral delivery of paclitaxel: differential impact of the polyethylene glycol linker size on drug delivery in vitro, in situ, and in vivo. Drug Deliv. 2020;27:170–179.
  • Kou L, Hou Y, Yao Q, et al. L-Carnitine-conjugated nanoparticles to promote permeation across blood-brain barrier and to target glioma cells for drug delivery via the novel organic cation/carnitine transporter OCTN2. Artif Cells Nanomed Biotechnol. 2018;46:1605–1616.
  • Fei W, Zhao Y, Wu X, et al. Nucleoside transporter-guided cytarabine-conjugated liposomes for intracellular methotrexate delivery and cooperative choriocarcinoma therapy. J Nanobiotechnology. 2021;19:184.
  • Kou L, Yao Q, Sivaprakasam S, et al. Dual targeting of l-carnitine-conjugated nanoparticles to OCTN2 and ATB(0,+) to deliver chemotherapeutic agents for Colon cancer therapy. Drug Deliv. 2017;24:1338–1349.
  • Wang Z, Chi D, Wu X, et al. Tyrosine modified irinotecan-loaded liposomes capable of simultaneously targeting LAT1 and ATB(0,+) for efficient tumor therapy. J Control Release. 2019;316:22–33.
  • Nagamatsu S, Sawa H, Wakizaka A, et al. Expression of facilitative glucose transporter isoforms in human brain tumors. J Neurochem. 1993;61:2048–2053.
  • Mei T, Zhang J, Wei L, et al. GLUT3 expression in cystic change induced by hypoxia in pituitary adenomas. Endocr Connect. 2018;7:1518–1527.
  • Zhou J, Li Y, Li D, et al. Oncoprotein LAMTOR5 activates GLUT1 via upregulating NF-κB in liver cancer. Open Med (Wars). 2019;14:264–270.
  • Sun M, Zhao S, Duan Y, et al. GLUT1 participates in tamoxifen resistance in breast cancer cells through autophagy regulation. Naunyn Schmiedebergs Arch Pharmacol. 2021;394:205–216.
  • Shao K, Zhang Y, Ding N, et al. Functionalized nanoscale micelles with brain targeting ability and intercellular microenvironment biosensitivity for anti-intracranial infection applications. Adv Healthc Mater. 2015;4:291–300.
  • Patching SG. Glucose transporters at the blood-brain barrier: function, regulation and gateways for drug delivery. Mol Neurobiol. 2017;54:1046–1077.
  • Veys K, Fan Z, Ghobrial M, et al. Role of the GLUT1 glucose transporter in postnatal CNS angiogenesis and Blood-Brain barrier integrity. Circ Res. 2020;127:466–482.
  • Nawashiro H, Otani N, Uozumi Y, et al. High expression of L-type amino acid transporter 1 in infiltrating glioma cells. Brain Tumor Pathol. 2005;22:89–91.
  • Zhang B, Chen Y, Shi X, et al. Regulation of branched-chain amino acid metabolism by hypoxia-inducible factor in glioblastoma. Cell Mol Life Sci. 2021;78:195–206.
  • An S, Lu X, Zhao W, et al. Amino acid metabolism abnormity and microenvironment variation mediated targeting and controlled glioma chemotherapy. Small. 2016;12:5633–5645.
  • Gonzalez-Carter DA, Ong ZY, McGilvery CM, et al. L-DOPA functionalized, multi-branched gold nanoparticles as brain-targeted nano-vehicles. Nanomedicine. 2019;15:1–11.
  • Liang Z, Cho HT, Williams L, et al. Potential biomarker of L-type amino acid transporter 1 in breast cancer progression. Nucl Med Mol Imaging. 2011;45:93–102.
  • Ong ZY, Chen S, Nabavi E, et al. Multibranched gold nanoparticles with intrinsic LAT-1 targeting capabilities for selective photothermal therapy of breast cancer. ACS Appl Mater Interfaces. 2017;9:39259–39270.
  • Bodoor K, Almomani R, Alqudah M, et al. LAT1 (SLC7A5) overexpression in negative Her2 group of breast cancer: a potential therapy target. Asian Pac J Cancer Prev. 2020;21:1453–1458.
  • Nałęcz KA. Amino acid transporter SLC6A14 (ATB(0,+)) - a target in combined anti-cancer therapy. Front Cell Dev Biol. 2020;8:594464.
  • Kou L, Yao Q, Zhang H, et al. Transporter-targeted nano-sized vehicles for enhanced and site-specific drug delivery. Cancers (Basel). 2020;12:2837.
  • Umapathy NS, Ganapathy V, Ganapathy ME. Transport of amino acid esters and the amino-acid-based prodrug valganciclovir by the amino acid transporter ATB(0,+). Pharm Res. 2004;21:1303–1310.
  • Kou L, Sun R, Ganapathy V, et al. Recent advances in drug delivery via the organic cation/carnitine transporter 2 (OCTN2/SLC22A5). Expert Opin Ther Targets. 2018;22:715–726.
  • He C, Jin Y, Deng Y, et al. Efficient oral delivery of poorly water-soluble drugs using carnitine/organic cation transporter 2-Mediated polymeric micelles. ACS Biomater Sci Eng. 2020;6:2146–2158.
  • Fink MA, Paland H, Herzog S, et al. L-Carnitine-Mediated tumor cell protection and poor patient survival associated with OCTN2 overexpression in glioblastoma multiforme. Clin Cancer Res. 2019;25:2874–2886.
  • Juraszek B, Nałęcz KA. SLC22A5 (OCTN2) carnitine transporter-indispensable for cell metabolism, a jekyll and hyde of human cancer. Molecules. 2019;25(1):14.
  • Kou L, Yao Q, Sun M, et al. Cotransporting ion is a trigger for cellular endocytosis of Transporter-Targeting nanoparticles: a case study of High-Efficiency SLC22A5 (OCTN2)-mediated Carnitine-Conjugated nanoparticles for oral delivery of therapeutic drugs. Adv Healthc Mater. 2017;6:165.
  • Chawla S, Lee SC, Mohan S, et al. Lack of choline elevation on proton magnetic resonance spectroscopy in grade I-III gliomas. Neuroradiol J. 2019;32:250–258.
  • Gao L, Xu W, Li T, et al. Accuracy of 11C-choline positron emission tomography in differentiating glioma recurrence from radiation necrosis: a systematic review and meta-analysis. Medicine (Baltimore). 2018;97:e11556.
  • Iwao B, Yara M, Hara N, et al. Functional expression of choline transporter like-protein 1 (CTL1) and CTL2 in human brain microvascular endothelial cells. Neurochem Int. 2016;93:40–50.
  • Inazu M. Functional expression of choline transporters in the blood-brain barrier. Nutrients. 2019;11:2265.
  • Li J, Guo Y, Kuang Y, et al. Choline transporter-targeting and co-delivery system for glioma therapy. Biomaterials. 2013;34:9142–9148.
  • Hao Z, Liu R, Wang Y, et al. Structure and application of human equilibrative nucleoside transporter. Chin J Cell Biol. 2016;38(06):736–743.
  • Espinoza JA, García P, Bizama C, et al. Low expression of equilibrative nucleoside transporter 1 is associated with poor prognosis in chemotherapy-naïve pT2 gallbladder adenocarcinoma patients. Histopathology. 2016;68:722–728.
  • Tavolari S, Deserti M, Vasuri F, et al. Membrane human equilibrative nucleoside transporter 1 is associated with a high proliferation rate and worse survival in resected intrahepatic cholangiocarcinoma patients not receiving adjuvant treatments. Eur J Cancer. 2019;106:160–170.
  • Vos LJ, Yusuf D, Lui A, et al. Predictive and prognostic properties of human equilibrative nucleoside transporter 1 expression in Gemcitabine-Treated pancreatobiliary cancer: a Meta-Analysis. J Clin Oncol Precis Oncol. 2019;3:1–22.
  • Attia F, Fathy S, Anani M, et al. Human equilibrative nucleoside transporter-1 and deoxycytidine kinase can predict gemcitabine effectiveness in Egyptian patients with hepatocellular carcinoma. J Clin Lab Anal. 2020;34:e23457.
  • Zhao P, Yin W, Wu A, et al. Dual-targeting to cancer cells and M2 macrophages via biomimetic delivery of mannosylated albumin nanoparticles for drug-resistant cancer therapy. Adv Funct Mater. 2017;27:1700403.
  • Zhang L, Sui C, Yang W, et al. Amino acid transporters: emerging roles in drug delivery for tumor-targeting therapy. Asian J Pharm Sci. 2020;15:192–206.
  • Locher KP. Mechanistic diversity in ATP-binding cassette (ABC) transporters. Nat Struct Mol Biol. 2016;23:487–493.
  • Zaragozá R. Transport of amino acids across the Blood-Brain barrier. Front Physiol. 2020;11:973.
  • Li L, Di X, Zhang S, et al. Large amino acid transporter 1 mediated glutamate modified docetaxel-loaded liposomes for glioma targeting. Colloids Surf B Biointerfaces. 2016;141:260–267.
  • Jiang X, Xin H, Gu J, et al. Enhanced antitumor efficacy by d-glucosamine-functionalized and paclitaxel-loaded poly(ethylene glycol)-co-poly(trimethylene carbonate) polymer nanoparticles. J Pharm Sci. 2014;103:1487–1496.
  • Du Y, Tian C, Wang M, et al. Dipeptide-modified nanoparticles to facilitate oral docetaxel delivery: new insights into PepT1-mediated targeting strategy. Drug Deliv. 2018;25:1403–1413.
  • Wang X, Qiu Y, Wang M, et al. Endocytosis and organelle targeting of nanomedicines in cancer therapy. Int J Nanomedicine. 2020;15:9447–9467.
  • Dong X. Current strategies for brain drug delivery. Theranostics. 2018;8:1481–1493.
  • Guo Y, Zhang Y, Li J, et al. Cell microenvironment-controlled antitumor drug releasing-nanomicelles for GLUT1-targeting hepatocellular carcinoma therapy. ACS Appl Mater Interfaces. 2015;7:5444–5453.
  • Furtado D, Björnmalm M, Ayton S, et al. Overcoming the Blood-Brain barrier: the role of nanomaterials in treating neurological diseases. Adv Mater. 2018;30:e1801362.
  • Kou L, Bhutia YD, Yao Q, et al. Transporter-Guided delivery of nanoparticles to improve drug permeation across cellular barriers and drug exposure to selective cell types. Front Pharmacol. 2018;9:27.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.