235
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Development of mRNA nano-vaccines for COVID-19 prevention and its biochemical interactions with various disease conditions and age groups

ORCID Icon, &
Pages 21-32 | Received 24 Jun 2023, Accepted 18 Nov 2023, Published online: 05 Dec 2023

References

  • Kaur SP, Gupta V. COVID-19 vaccine: a comprehensive status report. Virus Res. 2020;288:198114. doi:10.1016/j.virusres.2020.198114.
  • Mathieu E, Ritchie H, Ortiz-Ospina E, et al. Coronavirus pandemic (COVID-19) - vaccinations. Oxford: Our World Data; 2020. doi:10.1038/s41562-021-01122-8.
  • Kuiken T, Fouchier RAM, Schutten M, et al. Newly discovered coronavirus as the primary cause of severe acute respiratory syndrome. Lancet. 2003;362(9380):263–270. doi:10.1016/S0140-6736(03)13967-0.
  • Sharma AK. Novel coronavirus disease (COVID-19). Reson. 2020;25(5):647–668. doi:10.1007/s12045-020-0981-3.
  • Shereen MA, Khan S, Kazmi A, et al. COVID-19 infection: origin, transmission, and characteristics of human coronaviruses. J Adv Res. 2020;24:91–98. doi:10.1016/j.jare.2020.03.005.
  • Rothan HA, Byrareddy SN. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J Autoimmun. 2020;109:102433. doi:10.1016/j.jaut.2020.102433.
  • BPJ. WHO coronavirus disease (COVID-19) dashboard. Bangladesh Physiother J. 2020;10. doi:10.46945/bpj.10.1.03.01.
  • Mathieu E, Ritchie H, Ortiz-Ospina E, et al. A global database of COVID-19 vaccinations. Nat Hum Behav. 2021;5(7):947–953. doi:10.1038/s41562-021-01122-8.
  • Juliana AE, Tang MJ, Kemps L, et al. Viral causes of severe acute respiratory infection in hospitalized children and association with outcomes: a two-year prospective surveillance study in Suriname. PLoS One. 2021;16(2):e0247000. doi:10.1371/journal.pone.0247000.
  • Coltart CEM, Collet-Fenson LB. Future developments in the prevention, diagnosis and treatment of COVID-19. Best Pract Res Clin Obstet Gynaecol. 2021;73:56–80. doi:10.1016/j.bpobgyn.2021.03.012.
  • Ali I, Alharbi OML. COVID-19: disease, management, treatment, and social impact. Sci Total Environ. 2020;728:138861. doi:10.1016/j.scitotenv.2020.138861.
  • Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270–273. doi:10.1038/s41586-020-2012-7.
  • Walls AC, Park YJ, Tortorici MA, et al. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell. 2020;181(2):281–292.e6. doi:10.1016/j.cell.2020.02.058.
  • Duan L, Zheng Q, Zhang H, et al. The SARS-CoV-2 spike glycoprotein biosynthesis, structure, function, and antigenicity: implications for the design of spike-based vaccine immunogens. Front Immunol. 2020;11:576622. doi:10.3389/fimmu.2020.576622.
  • Aleem A, Nadeem AJ. Coronavirus (COVID-19) vaccine-induced immune thrombotic thrombocytopenia (VITT). 2021.
  • Zeng W, Liu G, Ma H, et al. Biochemical characterization of SARS-CoV-2 nucleocapsid protein. Biochem Biophys Res Commun. 2020;527(3):618–623. doi:10.1016/j.bbrc.2020.04.136.
  • Kang S, Yang M, Hong Z, et al. Crystal structure of SARS-CoV-2 nucleocapsid protein RNA binding domain reveals potential unique drug targeting sites. Acta Pharm Sin B. 2020;10(7):1228–1238. doi:10.1016/j.apsb.2020.04.009.
  • Sanchis-Gomar F, Lavie CJ, Perez-Quilis C, et al. Angiotensin-converting enzyme 2 and antihypertensives (angiotensin receptor blockers and angiotensin-converting enzyme inhibitors) in coronavirus disease 2019. Mayo Clin Proc. 2020;95(6):1222–1230. doi:10.1016/j.mayocp.2020.03.026.
  • Al-Benna S. Gene expression of angiotensin-converting enzyme 2 receptor in skin and the implications for CoviD-19, adv. Adv Skin Wound Care. 2021;34(1):31–35. doi:10.1097/01.ASW.0000722748.73437.7d.
  • Vinson V. The COVID-19 RNA-synthesizing machine. Science. 2020; 368(6492):726.6–727. doi:10.1126/science.368.6492.726-f.
  • Johnson BA, Xie X, Bailey AL, et al. Loss of furin cleavage site attenuates SARS-CoV-2 pathogenesis. Nature. 2021;591(7849):293–299. doi:10.1038/s41586-021-03237-4.
  • Finkel Y, Gluck A, Nachshon A, et al. SARS-CoV-2 uses a multipronged strategy to impede host protein synthesis. Nature. 2021;594(7862):240–245. doi:10.1038/s41586-021-03610-3.
  • Sun Y, Abriola L, Niederer RO, et al. Restriction of SARS-CoV-2 replication by targeting programmed -1 ribosomal frameshifting, proc. Natl Acad Sci USA. 2021;118:1–6. doi:10.1073/pnas.2023051118.
  • Zhang L, Richards A, Khalil A, et al. SARS-CoV-2 RNA reverse-transcribed and integrated into the human genome. Serv Biol. 2020;1–37. doi:10.1101/2020.12.12.422516.
  • Xiong Y, Liu Y, Cao L, et al. Transcriptomic characteristics of bronchoalveolar lavage fluid and peripheral blood mononuclear cells in COVID-19 patients. Emerg Microbes Infect. 2020;9(1):761–770. doi:10.1080/22221751.2020.1747363.
  • Bertram S, Glowacka I, Müller MA, et al. Cleavage and activation of the severe acute respiratory syndrome coronavirus spike protein by human airway Trypsin-Like protease. J Virol. 2011;85(24):13363–13372. doi:10.1128/jvi.05300-11.
  • Rodrigues TS, de Sá KSG, Ishimoto AY, et al. Inflammasomes are activated in response to SARS-cov-2 infection and are associated with COVID-19 severity in patients. J Exp Med. 2020;218(3):1–11. doi:10.1084/JEM.20201707.
  • Manzo G. COVID-19 as an immune complex hypersensitivity in antigen excess conditions: theoretical pathogenetic process and suggestions for potential therapeutic interventions. Front Immunol. 2020;11:566000. doi:10.3389/fimmu.2020.566000.
  • Zhang G, Liu X. Prediction and control of COVID-19 spreading based on a hybrid intelligent model. PLoS One. 2021;16(2):e0246360. doi:10.1371/journal.pone.0246360.
  • Sharma O, Sultan AA, Ding H, et al. A review of the progress and challenges of developing a vaccine for COVID-19. Front Immunol. 2020;11:585354. doi:10.3389/fimmu.2020.585354.
  • Bennet BM, Wolf J, Laureano R, et al. Review of current vaccine development strategies to prevent coronavirus disease 2019 (COVID-19). Toxicol Pathol. 2020;48(7):800–809. doi:10.1177/0192623320959090.
  • Wang H, Zhang Y, Huang B, et al. Development of an inactivated vaccine candidate, BBIBP-CorV, with potent protection against SARS-CoV-2. Cell. 2020;182(3):713–721.e9. doi:10.1016/j.cell.2020.06.008.
  • Trimpert J, Dietert K, Firsching TC, et al. Development of safe and highly protective live-attenuated SARS-CoV-2 vaccine candidates by genome recoding. Cell Rep. 2021;36(5):109493. doi:10.1016/j.celrep.2021.109493.
  • Silveira MM, Moreira GMSG, Mendonça M. DNA vaccines against COVID-19: perspectives and challenges. Life Sci. 2021;267:118919. doi:10.1016/j.lfs.2020.118919.
  • Nooraei S, Bahrulolum H, Hoseini ZS, et al. Virus-like particles: preparation, immunogenicity and their roles as nanovaccines and drug nanocarriers. J Nanobiotechnol. 2021;19(59):1–27. doi:10.1186/s12951-021-00806-7.
  • Velusamy P, Kiruba K, Su CH, et al. SARS-CoV-2 spike protein: site-specific breakpoints for the development of COVID-19 vaccines. J King Saud Univ Sci. 2021;33(8):101648. doi:10.1016/j.jksus.2021.101648.
  • Chauhan G, Madou MJ, Kalra S, et al. Nanotechnology for COVID-19: therapeutics and vaccine research. ACS Nano. 2020;14(7):7760–7782. doi:10.1021/acsnano.0c04006.
  • Maruggi G, Zhang C, Li J, et al. mRNA as a transformative technology for vaccine development to control infectious diseases. Mol Ther. 2019;27(4):757–772. doi:10.1016/j.ymthe.2019.01.020.
  • Komine-Aizawa S, Haruyama Y, Deguchi M, et al. The vaccination status and adverse effects of COVID-19 vaccine among pregnant women in Japan in 2021. J Obstet Gynaecol Res. 2022;48(7):1561–1569. doi:10.1111/jog.15285.
  • Li L, Guo P, Zhang X, et al. SARS-CoV-2 vaccine candidates in rapid development. Hum Vaccin Immunother. 2021;17(3):644–653. doi:10.1080/21645515.2020.1804777.
  • Song W, Gui M, Wang X, et al. Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2. PLoS Pathog. 2018;14(8):e1007236. doi:10.1371/journal.ppat.1007236.
  • Schoenmaker L, Witzigmann D, Kulkarni JA, et al. mRNA-lipid nanoparticle COVID-19 vaccines: structure and stability. Int J Pharm. 2021;601:120586. doi:10.1016/j.ijpharm.2021.120586.
  • CDC. Vaccines & immunizations clinical considerations : myocarditis and pericarditis after receipt of mRNA COVID-19 vaccines among adolescents and young adults. 2021:2–3.
  • Choi EM. COVID-19 vaccines for low- And Middle-income countries. Trans R Soc Trop Med Hyg. 2021;115(5):447–456. doi:10.1093/trstmh/trab045.
  • Rosa SS, Prazeres DMF, Azevedo AM, et al. mRNA vaccines manufacturing: challenges and bottlenecks. Vaccine. 2021;39(16):2190–2200. doi:10.1016/j.vaccine.2021.03.038.
  • Pilkington EH, Suys EJA, Trevaskis NL, et al. From influenza to COVID-19: lipid nanoparticle mRNA vaccines at the frontiers of infectious diseases. Acta Biomater. 2021;131:16–40. doi:10.1016/j.actbio.2021.06.023.
  • Schlake T, Thess A, Fotin-Mleczek M, et al. Developing mRNA-vaccine technologies. RNA Biol. 2012;9(11):1319–1330. doi:10.4161/rna.22269.
  • Chaudhary N, Weissman D, Whitehead KA. mRNA vaccines for infectious diseases: principles, delivery and clinical translation. Nat Rev Drug Discov. 2021;20(11):817–838. doi:10.1038/s41573-021-00283-5.
  • Cook IF. Best vaccination practice and medically attended injection site events following deltoid intramuscular injection. Hum Vaccin Immunother. 2015;11(5):1184–1191. doi:10.1080/21645515.2015.1017694.
  • Buschmann MD, Carrasco MJ, Alishetty S, et al. Nanomaterial delivery systems for mrna vaccines. Vaccines (Basel). 2021;9(1):65. doi:10.3390/vaccines9010065.
  • Liang C, Bencurova E, Psota E, et al. Population-predicted MHC class II Epitope presentation of SARS-CoV-2 structural proteins correlates to the case fatality rates of COVID-19 in different countries. Int J Mol Sci. 2021;22(5):2630. doi:10.3390/ijms22052630.
  • Yoo JS, Sasaki M, Cho SX, et al. SARS-CoV-2 inhibits induction of the MHC class I pathway by targeting the STAT1-IRF1-NLRC5 axis. Nat Commun. 2021;12(1):1–17. doi:10.1038/s41467-021-26910-8.
  • Poluektov Y, George M, Daftarian P, et al. Assessment of SARS-CoV-2 specific CD4(+) and CD8 (+) T cell responses using MHC class I and II tetramers. Vaccine. 2021;39(15):2110–2116. doi:10.1016/j.vaccine.2021.03.008.
  • Saravia J, Chapman NM, Chi H. Helper T cell differentiation. Cell Mol Immunol. 2019;16(7):634–643. doi:10.1038/s41423-019-0220-6.
  • K M. Helper T cell responses to respiratory viruses in the lung: development, virus suppression, and pathogenesis. Viral Immunol. 2017;30:421–430.
  • Zhou Y, Callendret B, Xu D, et al. Dominance of the CD4+ T helper cell response during acute resolving hepatitis a virus infection. J Exp Med. 2012;209(8):1481–1492. doi:10.1084/jem.20111906.
  • Ad’hiah AH, Al-Naseri MA, Ahmed ZA, et al. Cytokine gene variations and their impact on serum levels of IFN-γ, IL-2, IL-4, IL-10 and IL-12 among Iraqi Arabs. Meta Gene. 2019;19:98–103. doi:10.1016/j.mgene.2018.11.005.
  • Mascellino MT, Di Timoteo F, De Angelis M, et al. Overview of the main anti-sars-cov-2 vaccines: mechanism of action, efficacy and safety. Infect Drug Resist. 2021;14:3459–3476. doi:10.2147/IDR.S315727.
  • Calina D, Docea AO, Petrakis D, et al. Towards effective COVID‑19 vaccines: updates. Int J Mol Med. 2020;46(1):3–16. doi:10.3892/ijmm.2020.4596.
  • McNeil MM, DeStefano F. Vaccine-associated hypersensitivity. J Allergy Clin Immunol. 2018;141(2):463–472. doi:10.1016/j.jaci.2017.12.971.
  • Asano K, Fujisawa T, Nakamura Y, et al. Reactions including anaphylaxis to COVID-19 vaccine. Jpn J Allergol. 2021;70:215–223. doi:10.15036/arerugi.70.215.
  • Barda N, Dagan N, Ben-Shlomo Y, et al. Safety of the BNT162b2 mRNA Covid-19 vaccine in a nationwide setting. N Engl J Med. 2021;385(12):1078–1090. doi:10.1056/nejmoa2110475.
  • García-Grimshaw M, Ceballos-Liceaga SE, Hernández-Vanegas LE, et al. Neurologic adverse events among 704,003 first-dose recipients of the BNT162b2 mRNA COVID-19 vaccine in Mexico: a nationwide descriptive study. Clin Immunol. 2021;229:108786. doi:10.1016/j.clim.2021.108786.
  • Xiao Z, Xu C, Wang D, et al. The experience of treating patients with acute myocardial infarction under the COVID-19 epidemic. Catheter Cardiovasc Interv. 2021;97(2):E244–E248. doi:10.1002/ccd.28951.
  • Colella G, Orlandi M, Cirillo N. Bell’s palsy following COVID-19 vaccination. J Neurol. 2021;268(10):3589–3591. doi:10.1007/s00415-021-10462-4.
  • Dakay K, Cooper J, Bloomfield J, et al. Cerebral venous sinus thrombosis in COVID-19 infection: a case series and review of the literature. J Stroke Cerebrovasc Dis. 2021;30(1):105434. doi:10.1016/j.jstrokecerebrovasdis.2020.105434.
  • Razok A, Shams A, Almeer A, et al. Post-COVID-19 vaccine Guillain-Barré syndrome; first reported case from Qatar, ann. Med Surg. 2021;67:1–4. doi:10.1016/j.amsu.2021.102540.
  • Kim HN, Lee JH, Park HS, et al. A case of COVID-19 with acute myocardial infarction and cardiogenic shock. J Korean Med Sci. 2020;35(27):e258. doi:10.3346/JKMS.2020.35.E258.
  • Cliff-Patel N, Moncrieff L, Ziauddin V. Renal vein thrombosis and pulmonary embolism secondary to vaccine-induced thrombotic thrombocytopenia (VITT). Eur J Case Rep Intern Med. 2021;8(7):002692. doi:10.12890/2021_002692.
  • Curcio R, Gandolfo V, Alcidi R, et al. Vaccine-induced massive pulmonary embolism and thrombocytopenia following a single dose of Janssen Ad26.COV2.S vaccination. Int J Infect Dis. 2022;116:154–156. doi:10.1016/j.ijid.2021.12.345.
  • da Rosa Mesquita R, Francelino Silva Junior LC, Santos Santana FM, et al. Clinical manifestations of COVID-19 in the general population: systematic review. Wien Klin Wochenschr. 2021;133(7–8):377–382. doi:10.1007/s00508-020-01760-4.
  • Notarte KI, Ver AT, Velasco JV, et al. Effects of age, sex, serostatus, and underlying comorbidities on humoral response post-SARS-CoV-2 Pfizer-BioNTech mRNA vaccination: a systematic review. Crit Rev Clin Lab Sci. 2022;59(6):373–390. doi:10.1080/10408363.2022.2038539.
  • Allergic reactions including anaphylaxis after receipt of the first dose of Pfizer-BioNTech COVID-19 vaccine—United States, December 14–23, 2020. Morb Mortal Wkly Rep. 2021;70:46–51. doi:10.15585/mmwr.mm7002e1.
  • Dodd A, Hughes A, Sargant N, et al. Evidence update for the treatment of anaphylaxis. Resuscitation. 2021;163:86–96. doi:10.1016/j.resuscitation.2021.04.010.
  • Shimabukuro T, Nair N. Allergic reactions including anaphylaxis after receipt of the first dose of Pfizer-BioNTech COVID-19 vaccine. J Am Med Assoc. 2021;325(8):780–781. doi:10.1001/jama.2021.0600.
  • Simons FER, Gu X, Simons KJ. Epinephrine absorption in adults: intramuscular versus subcutaneous injection. J Allergy Clin Immunol. 2001;108(5):871–873. doi:10.1067/mai.2001.119409.
  • Matsuzaki S, Kamiya H, Inoshima I, et al. COVID-19 mRNA vaccine-induced pneumonitis, intern. Intern Med. 2022;61(1):81–86. doi:10.2169/internalmedicine.8310-21.
  • Tani N, Chong Y, Kurata Y, et al. Relation of fever intensity and antipyretic use with specific antibody response after two doses of the BNT162b2 mRNA vaccine. Vaccine. 2022;40(13):2062–2067. doi:10.1016/j.vaccine.2022.02.025.
  • Atkinson TM, Ohman EM, O’Neill WW, et al. A practical approach to mechanical circulatory support in patients undergoing percutaneous coronary intervention an interventional perspective, JACC. JACC Cardiovasc Interv. 2016;9(9):871–883. doi:10.1016/j.jcin.2016.02.046.
  • Numata T, Hida N, Yazaki K, et al. Seasonal influenza vaccine-induced pneumonitis presenting with multiple pulmonary nodules. Intern Med. 2018;57(5):707–711. doi:10.2169/internalmedicine.9399-17.
  • Lewis JR, Cohen LB. Update on colonoscopy preparation, premedication and sedation. Expert Rev Gastroenterol Hepatol. 2013;7(1):77–87. doi:10.1586/egh.12.68.
  • Schindler O, Steiner G, Trattner E, et al. Bilateral infiltrates in a health-care worker during the COVID-19 pandemic. Lancet Infect Dis. 2021;21(5):742. doi:10.1016/S1473-3099(20)30977-4.
  • Noreen S, Maqbool I, Madni A. Dexamethasone: therapeutic potential, risks, and future projection during COVID-19 pandemic. Eur J Pharmacol. 2021;894:173854. doi:10.1016/j.ejphar.2021.173854.
  • Marwa K, Kondamudi NP. Type IV hypersensitivity reaction. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2020.
  • Yoshifuji A, Ishioka K, Masuzawa Y, et al. COVID-19 vaccine induced interstitial lung disease. J Infect Chemother. 2022;28(1):95–98. doi:10.1016/j.jiac.2021.09.010.
  • Park JY, Kim JH, Lee IJ, et al. COVID-19 vaccine-related interstitial lung disease: a case study. Thorax. 2022;77(1):102–104. doi:10.1136/thoraxjnl-2021-217609.
  • Costabel U, Uzaslan E, Guzman J. Bronchoalveolar lavage in drug-induced lung disease. Clin Chest Med. 2004;25(1):25–35. doi:10.1016/S0272-5231(03)00143-6.
  • Oda N, Mitani R, Takata I, et al. Interstitial lung disease after receiving the mRNA-based COVID-19 vaccine tozinameran. Respir Med Case Rep. 2022;36:101618. doi:10.1016/j.rmcr.2022.101618.
  • Song Y, Gou Y, Gao J, et al. Lomerizine attenuates LPS-induced acute lung injury by inhibiting the macrophage activation through reducing Ca2+ influx. Front Pharmacol. 2023;14:1236469. doi:10.3389/fphar.2023.1236469.
  • Takeshita K, Saisho Y, Kitamura K, et al. Pneumonitis induced by ou-gon (skullcap). Intern Med. 2001;40(8):764–768.) doi:10.2169/internalmedicine.40.764.
  • Camus P, Fanton A, Bonniaud P, et al. Interstitial lung disease induced by drugs and radiation. Respiration. 2004;71(4):301–326. doi:10.1159/000079633.
  • Chioma OS, Hesse LE, Chapman A, et al. Role of the microbiome in interstitial lung diseases. Front Med (Lausanne). 2021;8:595522. doi:10.3389/fmed.2021.595522.
  • Campbell ML. Dyspnea. Crit Care Nurs Clin North Am. 2017;29(4):461–470. doi:10.1016/j.cnc.2017.08.006.
  • Nie S, Han S, Ouyang H, et al. Coronavirus disease 2019-related dyspnea cases difficult to interpret using chest computed tomography. Respir Med. 2020;167:105951. doi:10.1016/j.rmed.2020.105951.
  • Richalet JP. The invention of hypoxia. J Appl Physiol (1985). 2021;130(5):1573–1582. doi:10.1152/japplphysiol.00936.2020.
  • Kubo K, Azuma A, Kanazawa M, et al. Consensus statement for the diagnosis and treatment of drug-induced lung injuries. Respir Investig. 2013;51(4):260–277. doi:10.1016/j.resinv.2013.09.001.
  • Kuronuma K, Honda H, Mikami T, et al. Response to pneumococcal vaccine in interstitial lung disease patients: influence of systemic immunosuppressive treatment. Vaccine. 2018;36(33):4968–4972. doi:10.1016/j.vaccine.2018.06.062.
  • Fu Y, Cheng Y, Wu Y. Understanding SARS-CoV-2-Mediated inflammatory responses: from mechanisms to potential therapeutic tools. Virol Sin. 2020;35(3):266–271. doi:10.1007/s12250-020-00207-4.
  • Oster ME, Shay DK, Su JR, et al. Myocarditis cases reported after mRNA-based COVID-19 vaccination in the US from December 2020 to August 2021. J Am Med Assoc. 2022;327(4):331–340. doi:10.1001/jama.2021.24110.
  • World Health Organization. Covid-19 vaccines: safety surveillance manual. Geneva; 2020.
  • Ryan M, Montgomery J, Engler R, et al. Myocarditis following immunization with mRNA Covid-19 vaccines in members of the US military. JAMA Cardiol. 2021;6(10):1202–1206. doi:10.1001/jamacardio.2021.2833.
  • Zepp F, Knuf M. Coronavirus disease 2019 in childhood and adolescence: clinical signs, epidemiology and vaccination program. Monatsschr Kinderheilkd. 2021;169(11):1010–1033. doi:10.1007/s00112-021-01326-2.
  • Portela-Sánchez S, Sánchez-Soblechero A, Melgarejo Otalora PJ, et al. Neurological complications of COVID-19 in hospitalized patients: the registry of a neurology department in the first wave of the pandemic. Eur J Neurol. 2021;28(10):3339–3347. doi:10.1111/ene.14748.
  • Mansanguan S, Charunwatthana P, Piyaphanee W, et al. Cardiovascular manifestation of the BNT162b2 mRNA COVID-19 vaccine in adolescents. Trop Med Infect Dis. 2022;7(8):1–13. doi:10.3390/tropicalmed7080196.
  • Riad A, Schünemann H, Attia S, et al. Covid-19 vaccines safety tracking (CoVaST): protocol of a multi-center prospective cohort study for active surveillance of COVID-19 vaccines’ side effects. IJERPH. 2021;18(15):7859. doi:10.3390/ijerph18157859.
  • de Bruin S, Bos LD, van Roon MA, et al. Clinical features and prognostic factors in Covid-19: a prospective cohort study. EBioMedicine. 2021;67:103378. doi:10.1016/j.ebiom.2021.103378.
  • Wainstock T, Yoles I, Sergienko R, et al. Prenatal maternal COVID-19 vaccination and pregnancy outcomes. Vaccine. 2021;39(41):6037–6040. doi:10.1016/j.vaccine.2021.09.012.
  • Heath PT, Le Doare K, Khalil A. Inclusion of pregnant women in COVID-19 vaccine development, lancet. Lancet Infect Dis. 2020;20(9):1007–1008. doi:10.1016/S1473-3099(20)30638-1.
  • Skjefte M, Ngirbabul M, Akeju O, et al. COVID-19 vaccine acceptance among pregnant women and mothers of young children: results of a survey in 16 countries. Eur J Epidemiol. 2021;36(2):197–211. doi:10.1007/s10654-021-00728-6.
  • Hoffman Y, Palgi Y, Goodwin R, et al. Severe Covid-19 vaccine side-effects are rare in older adults yet are linked with depressive symptoms. Am J Geriatr Psychiatry. 2022;30(1):115–116. doi:10.1016/j.jagp.2021.09.010.
  • Teo SP. Review of Covid-19 vaccines and their evidence in older adults. Ann Geriatr Med Res. 2021;25(1):4–9. doi:10.4235/agmr.21.0011.
  • Brenner H. Focusing COVID-19 vaccinations on elderly and high-risk people, lancet. Lancet Reg Health Eur. 2021;2:100044. doi:10.1016/j.lanepe.2021.100044.
  • Teo SP. Review of COVID-19 mRNA vaccines: BNT162b2 and mRNA-1273. J Pharm Pract. 2021;35(6):947–951. doi:10.1177/08971900211009650.
  • Xia H, Jun J, Ling WP, et al. Chitosan nanoparticle carrying small interfering RNA to platelet-derived growth factor B mRNA inhibits proliferation of smooth muscle cells in rabbit injured arteries. Vascular. 2013;21(5):301–306. doi:10.1177/1708538113478737.
  • Xue H, Gao X, Zhang C. DNA nanostructure-based siRNA delivery systems. Chin Sci Bull. 2019;64(10):1053–1066. doi:10.1360/N972018-00893.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.