304
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Design and preparation of naringenin loaded functional biomimetic nano-drug delivery system for Alzheimer’s disease

, , , , , , & show all
Pages 80-92 | Received 05 Sep 2023, Accepted 23 Nov 2023, Published online: 12 Dec 2023

References

  • Liu W, Dong X, Liu Y, et al. Photoresponsive materials for intensified modulation of Alzheimer’s amyloid-β protein aggregation: a review. Acta Biomater. 2021;123:93–109. doi: 10.1016/j.actbio.2021.01.018.
  • Bakota L, Brandt R. Tau biology and tau-directed therapies for Alzheimer’s disease. Drugs. 2016;76(3):301–313. doi: 10.1007/s40265-015-0529-0.
  • Tosi G, Pederzoli F, Belletti D, et al. Nanomedicine in Alzheimer’s disease: amyloid beta targeting strategy. Prog Brain Res. 2019;245:57–88. doi: 10.1016/bs.pbr.2019.03.001.
  • West S, Bhugra P. Emerging drug targets for Aβ and tau in Alzheimer’s disease: a systematic review. Br J Clin Pharmacol. 2015;80(2):221–234. doi: 10.1111/bcp.1262180.
  • Šerý O, Povová J, Míšek I, et al. Molecular mechanisms of neuropathological changes in Alzheimer’s disease: a review. Folia Neuropathol. 2013;51(1):1–9. doi: 10.5114/fn.2013.34190.
  • Soulé J, Penke Z, Kanhema T, et al. Object-place recognition learning triggers rapid induction of plasticity-related immediate early genes and synaptic proteins in the rat dentate gyrus. Neural Plast. 2008;2008:269097. doi: 10.1155/2008/269097.
  • Zhang SL, Lahens NF, Yue Z, et al. A circadian clock regulates efflux by the blood-brain barrier in mice and human cells. Nat Commun. 2021;12(1):617. doi: 10.1038/s41467-020-20795-9.
  • Daneman R. The blood-brain barrier in health and disease. Ann Neurol. 2012;72(5):648–672. doi: 10.1002/ana.23648.
  • Liebner S, Dijkhuizen RM, Reiss Y, et al. Functional morphology of the blood-brain barrier in health and disease. Acta Neuropathol. 2018;135(3):311–336. doi: 10.1007/s00401-018-1815-1.
  • Cai Z, Qiao PF, Wan CQ, et al. Role of blood-brain barrier in Alzheimer’s disease. J Alzheimers Dis. 2018;63(4):1223–1234. doi: 10.3233/JAD-180098.
  • Nouri Z, Fakhri S, El-Senduny FF, et al. On the neuroprotective effects of naringenin: pharmacological targets, signaling pathways, molecular mechanisms, and clinical perspective. Biomolecules. 2019;9(11):690. doi: 10.3390/biom9110690.
  • Yang Y, Trevethan M, Wang S, et al. Beneficial effects of citrus flavanones naringin and naringenin and their food sources on lipid metabolism: an update on bioavailability, pharmacokinetics, and mechanisms. J Nutr Biochem. 2022;104:108967. doi: 10.1016/j.jnutbio.2022.108967.
  • Grieb P. Intracerebroventricular streptozotocin injections as a model of Alzheimer’s disease: in search of a relevant mechanism. Mol Neurobiol. 2016;53(3):1741–1752. doi: 10.1007/s12035-015-9132-3.
  • Calderaro A, Patanè GT, Tellone E, et al. The neuroprotective potentiality of flavonoids on Alzheimer’s disease. Int J Mol Sci. 2022;23(23):14835. doi: 10.3390/ijms232314835.
  • Haider S, Liaquat L, Ahmad S, et al. Naringenin protects AlCl3/D-galactose induced neurotoxicity in rat model of AD via attenuation of acetylcholinesterase levels and inhibition of oxidative stress. PLoS One. 2020;15(1):e0227631. doi: 10.1371/journal.pone.0227631.
  • Ghofrani S, Joghataei MT, Mohseni S, et al. Naringenin improves learning and memory in an Alzheimer’s disease rat model: insights into the underlying mechanisms. Eur J Pharmacol. 2015;764:195–201. doi: 10.1016/j.ejphar.2015.07.001.
  • Yang W, Liu Y, Xu QQ, et al. Sulforaphene ameliorates neuroinflammation and hyperphosphorylated tau protein via regulating the PI3K/akt/GSK-3β pathway in experimental models of Alzheimer’s disease. Oxid Med Cell Longev. 2020;2020:4754195. doi: 10.1155/2020/4754195.
  • Goodfriend TL, Ball DL, Oelkers W, et al. Torsemide inhibits aldosterone secretion in vitro. Life Sci. 1998;63(3):PL45–50. doi: 10.1016/s0024-3205(98)00265-3.
  • Bhia M, Motallebi M, Abadi B, et al. Naringenin nano-delivery systems and their therapeutic applications. Pharmaceutics. 2021;13(2):291. doi: 10.3390/pharmaceutics13020291.
  • Lei T, Yang Z, Xia X, et al. A nanocleaner specifically penetrates the blood-brain barrier at lesions to clean toxic proteins and regulate inflammation in Alzheimer’s disease. Acta Pharm Sin B. 2021;11(12):4032–4044. doi: 10.1016/j.apsb.2021.04.022.
  • Li B, Shao H, Gao L, et al. Nano-drug co-delivery system of natural active ingredients and chemotherapy drugs for cancer treatment: a review. Drug Deliv. 2022;29(1):2130–2161. doi: 10.1080/10717544.2022.2094498.
  • Luk BT, Zhang L. Cell membrane-camouflaged nanoparticles for drug delivery. J Control Release. 2015;220(Pt B):600–607. doi: 10.1016/j.jconrel.2015.07.019.
  • Zhang M, Cheng S, Jin Y, et al. Membrane engineering of cell membrane biomimetic nanoparticles for nanoscale therapeutics. Clin Transl Med. 2021;11(2):e292. doi: 10.1002/ctm2.292.
  • Hu CM, Zhang L, Aryal S, et al. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc Natl Acad Sci U S A. 2011;108(27):10980–10985. doi: 10.1073/pnas.1106634108.
  • Xie X, Wang H, Williams GR, et al. Erythrocyte membrane cloaked curcumin-Loaded nanoparticles for enhanced chemotherapy. Pharmaceutics. 2019;11(9):429. doi: 10.3390/pharmaceutics11090429.
  • Cui Y, Sun J, Hao W, et al. Dual-target peptide-modified erythrocyte membrane-enveloped PLGA nanoparticles for the treatment of glioma. Front Oncol. 2020;10:563938. doi: 10.3389/fonc.2020.563938.
  • Zhou Y, Tong F, Gu W, et al. Co-delivery of photosensitizer and diclofenac through sequentially responsive bilirubin nanocarriers for combating hypoxic tumors. Acta Pharm Sin B. 2022;12(3):1416–1431. doi: 10.1016/j.apsb.2021.12.001.
  • Huang Q, Jiang C, Xia X, et al. Pathological BBB crossing melanin-like nanoparticles as metal-ion chelators and neuroinflammation regulators against Alzheimer’s disease. Research. 2023;6:0180. doi: 10.34133/research.0180.
  • Zhou X, Smith QR, Liu X. Brain penetrating peptides and peptide-drug conjugates to overcome the blood-brain barrier and target CNS diseases. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2021;13(4):e1695. doi: 10.1002/wnan.1695.
  • Boado RJ, Zhang Y, Zhang Y, et al. Fusion antibody for Alzheimer’s disease with bidirectional transport across the blood-brain barrier and abeta fibril disaggregation. Bioconjug Chem. 2007;18(2):447–455. doi: 10.1021/bc060349x.
  • Jefferies WA, Brandon MR, Hunt SV, et al. Transferrin receptor on endothelium of brain capillaries. Nature. 1984;312(5990):162–163. doi: 10.1038/312162a0.
  • Ueda F, Raja KB, Simpson RJ, et al. Rate of 59Fe uptake into brain and cerebrospinal fluid and the influence thereon of antibodies against the transferrin receptor. J Neurochem. 1993;60(1):106–113. doi: 10.1111/j.1471-4159.1993.tb05828.x.
  • Ouyang Q, Meng Y, Zhou W, et al. New advances in brain-targeting nano-drug delivery systems for Alzheimer’s disease. J Drug Target. 2022;30(1):61–81. doi: 10.1080/1061186X.2021.1927055.
  • Guo Q, Xu S, Yang P, et al. A dual-ligand fusion peptide improves the brain-neuron targeting of nanocarriers in Alzheimer’s disease mice. J Control Release. 2020;320:347–362. doi: 10.1016/j.jconrel.2020.01.039.
  • Bode GH, Coué G, Freese C, et al. An in vitro and in vivo study of peptide-functionalized nanoparticles for brain targeting: the importance of selective blood-brain barrier uptake. Nanomedicine. 2017;13(3):1289–1300. doi: 10.1016/j.nano.2016.11.009.
  • Shi X, Ma R, Lu Y, et al. iRGD and TGN co-modified PAMAM for multi-targeted delivery of ATO to gliomas. Biochem Biophys Res Commun. 2020;527(1):117–123. doi: 10.1016/j.bbrc.2020.04.064.
  • Li J, Feng L, Fan L, et al. Targeting the brain with PEG-PLGA nanoparticles modified with phage-displayed peptides. Biomaterials. 2011;32(21):4943–4950. doi: 10.1016/j.biomaterials.2011.03.031.
  • Yang L, Sun J, Xie W, et al. Dual-functional selenium nanoparticles bind to and inhibit amyloid β fiber formation in Alzheimer’s disease. J Mater Chem B. 2017;5(30):5954–5967. doi: 10.1039/c6tb02952c.
  • Zhang C, Wan X, Zheng X, et al. Dual-functional nanoparticles targeting amyloid plaques in the brains of Alzheimer’s disease mice. Biomaterials. 2014;35(1):456–465. doi: 10.1016/j.biomaterials.2013.09.063.
  • Luk BT, Hu CM, Fang RH, et al. Interfacial interactions between natural RBC membranes and synthetic polymeric nanoparticles. Nanoscale. 2014;6(5):2730–2737. doi: 10.1039/c3nr06371b.
  • Lv W, Xu J, Wang X, et al. Bioengineered boronic ester modified dextran polymer nanoparticles as reactive oxygen species responsive nanocarrier for ischemic stroke treatment. ACS Nano. 2018;12(6):5417–5426. doi: 10.1021/acsnano.8b00477.
  • Schneider CS, Xu Q, Boylan NJ, et al. Nanoparticles that do not adhere to mucus provide uniform and long-lasting drug delivery to airways following inhalation. Sci Adv. 2017;3(4):e1601556. doi: 10.1126/sciadv.1601556.
  • Sengel C, Hasçiçek C, Gönül N. Design of vitamin E d-α-tocopheryl polyethylene glycol 1000 succinate-emulsified poly (D,L-lactide-co-glycolide) nanoparticles: influence of duration of ultrasonication energy. J Young Pharm. 2011;3(3):171–175. doi: 10.4103/0975-1483.83754.
  • Chai Z, Hu X, Wei X, et al. A facile approach to functionalizing cell membrane-coated nanoparticles with neurotoxin-derived peptide for brain-targeted drug delivery. J Control Release. 2017;264:102–111. doi: 10.1016/j.jconrel.2017.08.027.
  • Wang C, He L, Yan M, et al. Effects of polyprenols from pine needles of Pinus massoniana on ameliorating cognitive impairment in a D-galactose-induced mouse model. Age. 2014;36(4):9676. doi: 10.1007/s11357-014-9676-6.
  • Zhu K, Yao Y, Wang K, et al. Berberin sustained-release nanoparticles were enriched in infarcted rat myocardium and resolved inflammation. J Nanobiotechnology. 2023;21(1):33. doi: 10.1186/s12951-023-01790-w.
  • Ansari MJ, Alshahrani SM. Nano-encapsulation and characterization of baricitinib using poly-lactic-glycolic acid co-polymer. Saudi Pharm J. 2019;27(4):491–501. doi: 10.1016/j.jsps.2019.01.012.
  • Rodriguez PL, Harada T, Christian DA, et al. Minimal "self" peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles. Science. 2013;339(6122):971–975. doi: 10.1126/science.1229568.
  • Zhao J, Ye Z, Yang J, et al. Nanocage encapsulation improves antiepileptic efficiency of phenytoin. Biomaterials. 2020;240:119849. doi: 10.1016/j.biomaterials.2020.119849.
  • Deli MA, Abrahám CS, Kataoka Y, et al. Permeability studies on in vitro blood-brain barrier models: physiology, pathology, and pharmacology. Cell Mol Neurobiol. 2005;25(1):59–127. doi: 10.1007/s10571-004-1377-8.
  • Herland A, van der Meer AD, FitzGerald EA, et al. Distinct contributions of astrocytes and pericytes to neuroinflammation identified in a 3D human blood-brain barrier on a chip. PLoS One. 2016;11(3):e0150360. doi: 10.1371/journal.pone.0150360.
  • Takeshita Y, Fujikawa S, Serizawa K, et al. New BBB model reveals that IL-6 blockade suppressed the BBB disorder, preventing onset of NMOSD. Neurol Neuroimmunol Neuroinflamm. 2021;8(6):e1076. doi: 10.1212/NXI.0000000000001076.
  • Gao C, Wang Y, Sun J, et al. Neuronal mitochondria-targeted delivery of curcumin by biomimetic engineered nanosystems in Alzheimer’s disease mice. Acta Biomater. 2020;108:285–299. doi: 10.1016/j.actbio.2020.03.029.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.