416
Views
1
CrossRef citations to date
0
Altmetric
Review Articles

Cancer stem cell biomarkers and related signalling pathways

, , &
Pages 33-44 | Received 20 Sep 2023, Accepted 10 Dec 2023, Published online: 19 Dec 2023

References

  • Zhou H-M, Zhang J-G, Zhang X, et al. Targeting cancer stem cells for reversing therapy resistance: mechanism, signaling, and prospective agents. Sig Transduct Target Ther. 2021;6(1):62. doi:10.1038/s41392-020-00430-1.
  • Zeng Z, Fu M, Hu Y, et al. Regulation and signaling pathways in cancer stem cells: implications for targeted therapy for cancer. Mol Cancer. 2023;22(1):172. doi:10.1186/s12943-023-01877-w.
  • Lin S, Huang C, Sun J, et al. The mitochondrial deoxyguanosine kinase is required for cancer cell stemness in lung adenocarcinoma. EMBO Mol Med. 2019;11(12):e10849. doi:10.15252/emmm.201910849.
  • Li H, Yan W, Suo X, et al. Nucleus-targeted nano delivery system eradicates cancer stem cells by combined thermotherapy and hypoxia-activated chemotherapy. Biomaterials. 2019;200:1–14. doi:10.1016/j.biomaterials.2019.01.048.
  • Zeng Z, Fu M, Fadini YG, et al. Circulating stem cells and cardiovascular outcomes: from basic science to the clinic. Eur Heart J. 2020;41(44):4271–4282. doi:10.1093/eurheartj/ehz923.
  • McAbee JH, Rath BH, Valdez K, et al. Radiation drives the evolution of orthotopic xenografts initiated from glioblastoma stem-like cells. Cancer Res. 2019;79(23):6032–6043. doi:10.1158/0008-5472.CAN-19-2452.
  • Liu CL, Chen YJ, Fan MH, et al. Characteristics of CD133-Sustained chemoresistant cancer stem-like cells in human ovarian carcinoma. Int J Mol Sci. 2020;21(18):6467. doi:10.3390/ijms21186467.
  • Huang R, Mo D, Wu J, et al. CD133 expression correlates with clinicopathologic features and poor prognosis of colorectal cancer patients: an updated meta-analysis of 37 studies. Medicine (Baltimore). 2018;97(23):e10446. doi:10.1097/MD.0000000000010446.
  • Erdogan S, Turkekul K, Dibirdik I, et al. Midkine downregulation increases the efficacy of quercetin on prostate cancer stem cell survival and migration through PI3K/AKT and MAPK/ERK pathway. Biomed Pharmacother. 2018;107:793–805. doi:10.1016/j.biopha.2018.08.061.
  • Liu TJ, Sun BC, Zhao XL, et al. CD133+ cells with cancer stem cell characteristics associates with vasculogenic mimicry in triple-negative breast cancer. Oncogene. 2013;32(5):544–553. doi:10.1038/onc.2012.85.
  • Fakiruddin KS, Lim MN, Nordin N, et al. Targeting of CD133+ cancer stem cells by mesenchymal stem cell expressing TRAIL reveals a prospective role of apoptotic gene regulation in non-small cell lung cancer. Cancers (Basel). 2019;11(9):1261. doi:10.3390/cancers11091261.
  • Kumar D, Kumar S, Gorain M, et al. Notch1-MAPK signaling axis regulates CD133+ cancer stem cell-mediated melanoma growth and angiogenesis. J Invest Dermatol. 2016;136(12):2462–2474. doi:10.1016/j.jid.2016.07.024.
  • Piao LS, Hur W, Kim T-K, et al. CD133+ liver cancer stem cells modulate radioresistance in human hepatocellular carcinoma. Cancer Lett. 2012;315(2):129–137. doi:10.1016/j.canlet.2011.10.012.
  • Lan X, Wu Y-Z, Wang Y, et al. CD133 silencing inhibits stemness properties and enhances chemoradiosensitivity in CD133-positive liver cancer stem cells. Int J Mol Med. 2013;31(2):315–324. doi:10.3892/ijmm.2012.1208.
  • Yu H, Zhou L, Loong JHC, et al. SERPINA12 promotes the tumorigenic capacity of HCC stem cells through hyperactivation of AKT/β-catenin signaling. Hepatology. 2023;78(6):1711–1726. doi:10.1097/HEP.0000000000000269.
  • Jang J-W, Song Y, Kim S-H, et al. CD133 confers cancer stem-like cell properties by stabilizing EGFR-AKT signaling in hepatocellular carcinoma. Cancer Lett. 2017;389:1–10. doi:10.1016/j.canlet.2016.12.023.
  • Wang K-H, Kao A-P, Chang C-C, et al. Increasing CD44+/CD24(-) tumor stem cells, and upregulation of COX-2 and HDAC6, as major functions of HER2 in breast tumorigenesis. Mol Cancer. 2010;9(1):288. doi:10.1186/1476-4598-9-288.
  • Liu C, Zhang Y, Gao J, et al. A highly potent small-molecule antagonist of exportin-1 selectively eliminates CD44 + CD24- enriched breast cancer stem-like cells. Drug Resist Updat. 2023;66:100903. doi:10.1016/j.drup.2022.100903.
  • Ooki A, VandenBussche CJ, Kates M, et al. CD24 regulates cancer stem cell (CSC)-like traits and a panel of CSC-related molecules serves as a non-invasive urinary biomarker for the detection of bladder cancer. Br J Cancer. 2018;119(8):961–970. doi:10.1038/s41416-018-0291-7.
  • Xiao W, Gao Z, Duan Y, et al. Notch signaling plays a crucial role in cancer stem-like cells maintaining stemness and mediating chemotaxis in renal cell carcinoma. J Exp Clin Cancer Res. 2017;36(1):41. doi:10.1186/s13046-017-0507-3.
  • Wang R, Li Y, Tsung A, et al. iNOS promotes CD24 + CD133+ liver cancer stem cell phenotype through a TACE/ADAM17-dependent notch signaling pathway. Proc Natl Acad Sci U S A. 2018;115(43):E10127–E10136. doi:10.1073/pnas.1722100115.
  • Zhou Z, Li Y, Kuang M, et al. The CD24+ cell subset promotes invasion and metastasis in human osteosarcoma. EBioMedicine. 2020;51:102598. doi:10.1016/j.ebiom.2019.102598.
  • Weng C-C, Ding P-Y, Liu Y-H, et al. Mutant kras-induced upregulation of CD24 enhances prostate cancer stemness and bone metastasis. Oncogene. 2019;38(12):2005–2019. doi:10.1038/s41388-018-0575-7.
  • Gao M-Q, Choi Y-P, Kang S, et al. CD24+ cells from hierarchically organized ovarian cancer are enriched in cancer stem cells. Oncogene. 2010;29(18):2672–2680. doi:10.1038/onc.2010.35.
  • Su Y-J, Lai H-M, Chang Y-W, et al. Direct reprogramming of stem cell properties in Colon cancer cells by CD44. Embo J. 2011;30(15):3186–3199. doi:10.1038/emboj.2011.211.
  • Luo Y, Tian Z, Hua X, et al. Isorhapontigenin (ISO) inhibits stem cell-like properties and invasion of bladder cancer cell by attenuating CD44 expression. Cell Mol Life Sci. 2020;77(2):351–363. doi:10.1007/s00018-019-03185-3.
  • Wang W, Dong L-P, Zhang N, et al. Role of cancer stem cell marker CD44 in gastric cancer: a meta-analysis. Int J Clin Exp Med. 2014;7:5059–5066.
  • Wei C-Y, Zhu M-X, Yang Y-W, et al. Downregulation of RNF128 activates wnt/β-catenin signaling to induce cellular EMT and stemness via CD44 and CTTN ubiquitination in melanoma. J Hematol Oncol. 2019;12(1):21. doi:10.1186/s13045-019-0711-z.
  • Zhao L, Qiu T, Jiang D, et al. SGCE promotes breast cancer stem cells by stabilizing EGFR. Adv Sci (Weinh). 2020;7(14):1903700. doi:10.1002/advs.201903700.
  • Ryoo I-G, Choi B-H, Ku S-K, et al. High CD44 expression mediates p62-associated NFE2L2/NRF2 activation in breast cancer stem cell-like cells: implications for cancer stem cell resistance. Redox Biol. 2018;17:246–258. doi:10.1016/j.redox.2018.04.015.
  • Zhang M, Wang L, Yue Y, et al. ITPR3 facilitates tumor growth, metastasis and stemness by inducing the NF-ĸB/CD44 pathway in urinary bladder carcinoma. J Exp Clin Cancer Res. 2021;40(1):65. doi:10.1186/s13046-021-01866-1.
  • Jiang P, Li F, Liu Z, et al. BTB and CNC homology 1 (Bach1) induces lung cancer stem cell phenotypes by stimulating CD44 expression. Respir Res. 2021;22(1):320. doi:10.1186/s12931-021-01918-2.
  • Ishiguro K, Yan IK, Lewis-Tuffin L, et al. Targeting liver cancer stem cells using engineered biological nanoparticles for the treatment of hepatocellular cancer. Hepatol Commun. 2020;4(2):298–313. doi:10.1002/hep4.1462.
  • Noman ASM, Parag RR, Rashid MI, et al. Chemotherapeutic resistance of head and neck squamous cell carcinoma is mediated by EpCAM induction driven by IL-6/p62 associated Nrf2-antioxidant pathway activation. Cell Death Dis. 2020;11(8):663. doi:10.1038/s41419-020-02907-x.
  • Han M-E, Jeon T-Y, Hwang S-H, et al. Cancer spheres from gastric cancer patients provide an ideal model system for cancer stem cell research. Cell Mol Life Sci. 2011;68(21):3589–3605. doi:10.1007/s00018-011-0672-z.
  • Park DJ, Sung PS, Kim J-H, et al. EpCAM-high liver cancer stem cells resist natural killer cell-mediated cytotoxicity by upregulating CEACAM1. J Immunother Cancer. 2020;8(1):e000301. doi:10.1136/jitc-2019-000301.
  • Cheng Q, Ning S, Zhu L, et al. NDRG1 facilitates self-renewal of liver cancer stem cells by preventing EpCAM ubiquitination. Br J Cancer. 2023;129(2):237–248. doi:10.1038/s41416-023-02278-y.
  • Ni J, Cozzi P, Hao J, et al. Epithelial cell adhesion molecule (EpCAM) is associated with prostate cancer metastasis and chemo/radioresistance via the PI3K/akt/mTOR signaling pathway. Int J Biochem Cell Biol. 2013;45(12):2736–2748. doi:10.1016/j.biocel.2013.09.008.
  • Liu S, Li N, Yu X, et al. Expression of intercellular adhesion molecule 1 by hepatocellular carcinoma stem cells and circulating tumor cells. Gastroenterology. 2013;144(5):1031–1041.e10. doi:10.1053/j.gastro.2013.01.046.
  • Li C, Liu S, Yan R, et al. CD54-NOTCH1 axis controls tumor initiation and cancer stem cell functions in human prostate cancer. Theranostics. 2017;7(1):67–80. doi:10.7150/thno.16752.
  • Guo W, Liu S, Cheng Y, et al. ICAM-1-related noncoding RNA in cancer stem cells maintains ICAM-1 expression in hepatocellular carcinoma. Clin Cancer Res. 2016;22(8):2041–2050. doi:10.1158/1078-0432.CCR-14-3106.
  • Xue C, Gao Y, Sun Z, et al. Mesenchymal stem cells derived from adipose tissue accelerate the progression of Colon cancer by inducing a MTCAF phenotype via ICAM1/STAT3/AKT axis. Front Oncol. 2022;12:837781. doi:10.3389/fonc.2022.837781.
  • Kesanakurti D, Chetty C, Rajasekhar Maddirela D, et al. Essential role of cooperative NF-κB and Stat3 recruitment to ICAM-1 intronic consensus elements in the regulation of radiation-induced invasion and migration in glioma. Oncogene. 2013;32(43):5144–5155. doi:10.1038/onc.2012.546.
  • Tsai S-T, Wang P-J, Liou N-J, et al. ICAM1 is a potential cancer stem cell marker of esophageal squamous cell carcinoma. PLoS One. 2015;10(11):e0142834. doi:10.1371/journal.pone.0142834.
  • Hu P-S, Li T, Lin J-F, et al. VDR-SOX2 signaling promotes colorectal cancer stemness and malignancy in an acidic microenvironment. Signal Transduct Target Ther. 2020;5:183. doi:10.1038/s41392-020-00230-7.
  • Schaal CM, Bora-Singhal N, Kumar DM, et al. Regulation of Sox2 and stemness by nicotine and electronic-cigarettes in non-small cell lung cancer. Mol Cancer. 2018;17(1):149. doi:10.1186/s12943-018-0901-2.
  • Zhan Y, Chen Z, He S, et al. Long non-coding RNA SOX2OT promotes the stemness phenotype of bladder cancer cells by modulating SOX2. Mol Cancer. 2020;19(1):25. doi:10.1186/s12943-020-1143-7.
  • Singh S, Trevino J, Bora-Singhal N, et al. EGFR/src/akt signaling modulates Sox2 expression and self-renewal of stem-like side-population cells in non-small cell lung cancer. Mol Cancer. 2012;11(1):73. doi:10.1186/1476-4598-11-73.
  • Wang X, Chen Y, Wang X, et al. Stem cell factor SOX2 confers ferroptosis resistance in lung cancer via upregulation of SLC7A11. Cancer Res. 2021;81:5217–5229. doi:10.1158/0008-5472.CAN-21-0567.
  • Zhang L-H, Yin Y-H, Chen H-Z, et al. TRIM24 promotes stemness and invasiveness of glioblastoma cells via activating Sox2 expression. Neuro Oncol. 2020;22:1797–1808. doi:10.1093/neuonc/noaa138.
  • Leis A, Eguiara E, Lopez-Arribillaga MJ, et al. Sox2 expression in breast tumours and activation in breast cancer stem cells. Oncogene. 2012;31:1354–1365. doi:10.1038/onc.2011.338.
  • Zhang J, Chang DY, Mercado-Uribe I, et al. Sex-determining region Y-box 2 expression predicts poor prognosis in human ovarian carcinoma. Hum Pathol. 2012;43:1405–1412. doi:10.1016/j.humpath.2011.10.016.
  • Chang T-Y, Lan K-C, Chiu C-Y, et al. ANGPTL1 attenuates cancer migration, invasion, and stemness through regulating FOXO3a-mediated SOX2 expression in colorectal cancer. Clin Sci (Lond). 2022;136:657–673. doi:10.1042/CS20220043.
  • Zhao D, Pan C, Sun J, et al. VEGF drives cancer-initiating stem cells through VEGFR-2/Stat3 signaling to upregulate Myc and Sox2. Oncogene. 2015;34:3107–3119. doi:10.1038/onc.2014.257.
  • Wang Z, Kang L, Zhang H, et al. AKT drives SOX2 overexpression and cancer cell stemness in esophageal cancer by protecting SOX2 from UBR5-mediated degradation. Oncogene. 2019;38:5250–5264. doi:10.1038/s41388-019-0790-x.
  • Li Q, Kong F, Cong R, et al. PVT1/miR-136/Sox2/UPF1 axis regulates the malignant phenotypes of endometrial cancer stem cells. Cell Death Dis. 2023;14:177. doi:10.1038/s41419-023-05651-0.
  • Zhu Y, Huang S, Chen S, et al. SOX2 promotes chemoresistance, cancer stem cells properties, and epithelial-mesenchymal transition by β-catenin and Beclin1/autophagy signaling in colorectal cancer. Cell Death Dis. 2021;12:449. doi:10.1038/s41419-021-03733-5.
  • Keysar SB, Le PN, Miller B, et al. Regulation of head and neck squamous cancer stem cells by PI3K and SOX2. J Natl Cancer Inst. 2017;109:djw189. doi:10.1093/jnci/djw189.
  • Tang Q, Chen J, Di Z, et al. TM4SF1 promotes EMT and cancer stemness via the wnt/β-catenin/SOX2 pathway in colorectal cancer. J Exp Clin Cancer Res. 2020;39:232. doi:10.1186/s13046-020-01690-z.
  • Praharaj PP, Patra S, Mishra SR, et al. CLU (clusterin) promotes mitophagic degradation of MSX2 through an AKT-DNM1L/Drp1 axis to maintain SOX2-mediated stemness in oral cancer stem cells. Autophagy. 2023;19:2196–2216. doi:10.1080/15548627.2023.2178876.
  • Umemura A, He F, Taniguchi K, et al. p62, upregulated during preneoplasia, induces hepatocellular carcinogenesis by maintaining survival of stressed HCC-Initiating cells. Cancer Cell. 2016;29:935–948. doi:10.1016/j.ccell.2016.04.006.
  • Lee K-M, Giltnane JM, Balko JM, et al. MYC and MCL1 cooperatively promote chemotherapy-resistant breast cancer stem cells via regulation of mitochondrial oxidative phosphorylation. Cell Metab. 2017;26:633–647.e7. doi:10.1016/j.cmet.2017.09.009.
  • Wang W-J, Wu S-P, Liu J-B, et al. MYC regulation of CHK1 and CHK2 promotes radioresistance in a stem cell-like population of nasopharyngeal carcinoma cells. Cancer Res. 2013;73:1219–1231. doi:10.1158/0008-5472.CAN-12-1408.
  • Akita H, Marquardt JU, Durkin ME, et al. MYC activates stem-like cell potential in hepatocarcinoma by a p53-dependent mechanism. Cancer Res. 2014;74:5903–5913. doi:10.1158/0008-5472.CAN-14-0527.
  • Moumen M, Chiche A, Decraene C, et al. Myc is required for β-catenin-mediated mammary stem cell amplification and tumorigenesis. Mol Cancer. 2013;12:132. doi:10.1186/1476-4598-12-132.
  • Das B, Pal B, Bhuyan R, et al. MYC regulates the HIF2α stemness pathway via nanog and Sox2 to maintain self-renewal in cancer stem cells versus non-stem cancer cells. Cancer Res. 2019;79:4015–4025. doi:10.1158/0008-5472.CAN-18-2847.
  • Yin X, Zhang B-H, Zheng S-S, et al. Coexpression of gene Oct4 and nanog initiates stem cell characteristics in hepatocellular carcinoma and promotes epithelial-mesenchymal transition through activation of Stat3/snail signaling. J Hematol Oncol. 2015;8:23. doi:10.1186/s13045-015-0119-3.
  • Yang Y, Chen C, Zuo Q, et al. NARF is a hypoxia-induced coactivator for OCT4-mediated breast cancer stem cell specification. Sci Adv. 2022;8:eabo5000. doi:10.1126/sciadv.abo5000.
  • Zhou Y, Chen X, Kang B, et al. Endogenous authentic OCT4A proteins directly regulate FOS/AP-1 transcription in somatic cancer cells. Cell Death Dis. 2018;9(6):585. doi:10.1038/s41419-018-0606-x.
  • Yang Y-C, Chien M-H, Liu H-Y, et al. Nuclear translocation of PKM2/AMPK complex sustains cancer stem cell populations under glucose restriction stress. Cancer Lett. 2018;421:28–40. doi:10.1016/j.canlet.2018.01.075.
  • Kuo K-K, Lee K-T, Chen K-K, et al. Positive feedback loop of OCT4 and c-JUN expedites cancer stemness in liver cancer. Stem Cells. 2016;34(11):2613–2624. doi:10.1002/stem.2447.
  • Liu Q, Chen K, Liu Z, et al. BORIS up-regulates OCT4 via histone methylation to promote cancer stem cell-like properties in human liver cancer cells. Cancer Lett. 2017;403:165–174. doi:10.1016/j.canlet.2017.06.017.
  • Jeter CR, Liu B, Liu X, et al. NANOG promotes cancer stem cell characteristics and prostate cancer resistance to androgen deprivation. Oncogene. 2011;30(36):3833–3845. doi:10.1038/onc.2011.114.
  • Kang K-T, Shin M-J, Moon H-J, et al. TRRAP enhances cancer stem cell characteristics by regulating NANOG protein stability in colon cancer cells. Int J Mol Sci. 2023;24(7):6260. doi:10.3390/ijms24076260.
  • Shan J, Shen J, Liu L, et al. Nanog regulates self-renewal of cancer stem cells through the insulin-like growth factor pathway in human hepatocellular carcinoma. Hepatology. 2012;56(3):1004–1014. doi:10.1002/hep.25745.
  • Cao J, Zhao M, Liu J, et al. RACK1 promotes self-renewal and chemoresistance of cancer stem cells in human hepatocellular carcinoma through stabilizing nanog. Theranostics. 2019;9(3):811–828. doi:10.7150/thno.29271.
  • Noh KH, Kim BW, Song K-H, et al. Nanog signaling in cancer promotes stem-like phenotype and immune evasion. J Clin Invest. 2012;122(11):4077–4093. doi:10.1172/JCI64057.
  • Huang C, Yoon C, Zhou X-H, et al. ERK1/2-nanog signaling pathway enhances CD44(+) cancer stem-like cell phenotypes and epithelial-to-mesenchymal transition in head and neck squamous cell carcinomas. Cell Death Dis. 2020;11(4):266. doi:10.1038/s41419-020-2448-6.
  • Song K-H, Choi CH, Lee H-J, et al. HDAC1 upregulation by NANOG promotes multidrug resistance and a stem-like phenotype in immune edited tumor cells. Cancer Res. 2017;77(18):5039–5053. doi:10.1158/0008-5472.CAN-17-0072.
  • Almozyan S, Colak D, Mansour F, et al. PD-L1 promotes OCT4 and nanog expression in breast cancer stem cells by sustaining PI3K/AKT pathway activation. Int J Cancer. 2017;141(7):1402–1412. doi:10.1002/ijc.30834.
  • Zhao D, Mo Y, Li M-T, et al. NOTCH-induced aldehyde dehydrogenase 1A1 deacetylation promotes breast cancer stem cells. J Clin Invest. 2014;124(12):5453–5465. doi:10.1172/JCI76611.
  • Hassan KA, Wang L, Korkaya H, et al. Notch pathway activity identifies cells with cancer stem cell-like properties and correlates with worse survival in lung adenocarcinoma. Clin Cancer Res. 2013;19(8):1972–1980. doi:10.1158/1078-0432.CCR-12-0370.
  • Suman S, Das TP, Damodaran C. Silencing NOTCH signaling causes growth arrest in both breast cancer stem cells and breast cancer cells. Br J Cancer. 2013;109(10):2587–2596. doi:10.1038/bjc.2013.642.
  • Fendler A, Bauer D, Busch J, et al. Inhibiting WNT and NOTCH in renal cancer stem cells and the implications for human patients. Nat Commun. 2020;11(1):929. doi:10.1038/s41467-020-14700-7.
  • Giordano F, D’Amico M, Montalto FI, et al. Cdk4 regulates glioblastoma cell invasion and stemness and is target of a notch inhibitor plus resveratrol combined treatment. Int J Mol Sci. 2023;24(12):10094. doi:10.3390/ijms241210094.
  • Zhang X, Zhao X, Shao S, et al. Notch1 induces epithelial-mesenchymal transition and the cancer stem cell phenotype in breast cancer cells and STAT3 plays a key role. Int J Oncol. 2015;46(3):1141–1148. doi:10.3892/ijo.2014.2809.
  • Charafe-Jauffret E, Ginestier C, Iovino F, et al. Aldehyde dehydrogenase 1-positive cancer stem cells mediate metastasis and poor clinical outcome in inflammatory breast cancer. Clin Cancer Res. 2010;16(1):45–55. doi:10.1158/1078-0432.CCR-09-1630.
  • Althobiti M, El Ansari R, Aleskandarany M, et al. The prognostic significance of ALDH1A1 expression in early invasive breast cancer. Histopathology. 2020;77(3):437–448. doi:10.1111/his.14129.
  • Fourneaux B, Bourdon A, Dadone B, et al. Identifying and targeting cancer stem cells in leiomyosarcoma: prognostic impact and role to overcome secondary resistance to PI3K/mTOR inhibition. J Hematol Oncol. 2019;12(1):11. doi:10.1186/s13045-018-0694-1.
  • Wang W, He S, Zhang R, et al. ALDH1A1 maintains the cancer stem-like cells properties of esophageal squamous cell carcinoma by activating the AKT signal pathway and interacting with β-catenin. Biomed Pharmacother. 2020;125:109940. doi:10.1016/j.biopha.2020.109940.
  • Liu C, Qiang J, Deng Q, et al. ALDH1A1 activity in tumor-initiating cells remodels myeloid-derived suppressor cells to promote breast cancer progression. Cancer Res. 2021;81(23):5919–5934. doi:10.1158/0008-5472.CAN-21-1337.
  • Ciccone V, Terzuoli E, Donnini S, et al. Stemness marker ALDH1A1 promotes tumor angiogenesis via retinoic acid/HIF-1α/VEGF signalling in MCF-7 breast cancer cells. J Exp Clin Cancer Res. 2018;37(1):311. doi:10.1186/s13046-018-0975-0.
  • Moein S, Tenen DG, Amabile G, et al. SALL4: an intriguing therapeutic target in cancer treatment. Cells. 2022;11(16):2601. doi:10.3390/cells11162601.
  • Zeng SS, Yamashita T, Kondo M, et al. The transcription factor SALL4 regulates stemness of EpCAM-positive hepatocellular carcinoma. J Hepatol. 2014;60(1):127–134. doi:10.1016/j.jhep.2013.08.024.
  • He J, Zhou M, Chen X, et al. Inhibition of SALL4 reduces tumorigenicity involving epithelial-mesenchymal transition via wnt/β-catenin pathway in esophageal squamous cell carcinoma. J Exp Clin Cancer Res. 2016;35(1):98. doi:10.1186/s13046-016-0378-z.
  • Du W, Ni L, Liu B, et al. Upregulation of SALL4 by EGFR activation regulates the stemness of CD44-positive lung cancer. Oncogenesis. 2018;7(4):36. doi:10.1038/s41389-018-0045-7.
  • Diener J, Baggiolini A, Pernebrink M, et al. Epigenetic control of melanoma cell invasiveness by the stem cell factor SALL4. Nat Commun. 2021;12(1):5056. doi:10.1038/s41467-021-25326-8.
  • Zhou Y, Zhang Y, Zhao D, et al. TTD: therapeutic target database describing target druggability information. Nucleic Acids Res. 2023; gkad751. doi:10.1093/nar/gkad751.
  • Dai H, Tong C, Shi D, et al. Efficacy and biomarker analysis of CD133-directed CAR T cells in advanced hepatocellular carcinoma: a single-arm, open-label, phase II trial. Oncoimmunology. 2020;9(1):1846926. doi:10.1080/2162402X.2020.1846926.
  • Lee TK-W, Guan X-Y, Ma S. Cancer stem cells in hepatocellular carcinoma - from origin to clinical implications. Nat Rev Gastroenterol Hepatol. 2022;19(1):26–44. doi:10.1038/s41575-021-00508-3.
  • Girda E, Hou J, Nelson D, et al. Phase I trial of daily subcutaneous SPL-108 injections in combination with paclitaxel in patients with platinum resistant CD44+ advanced ovarian epithelial cancer. Int J Gynecol Cancer. 2022;32(8):1032–1038. doi:10.1136/ijgc-2021-003316.
  • Verel K-H, Heider M, Siegmund E, et al. Tumor targeting properties of monoclonal antibodies with different affinity for target antigen CD44V6 in nude mice bearing head-and-neck cancer xenografts. Int J Cancer. 2002;99(3):396–402. doi:10.1002/ijc.10369.
  • Tijink BM, Buter J, de Bree R, et al. A phase I dose escalation study with anti-CD44v6 bivatuzumab mertansine in patients with incurable squamous cell carcinoma of the head and neck or esophagus. Clin Cancer Res. 2006;12(20):6064–6072. doi:10.1158/1078-0432.CCR-06-0910.
  • Han Y, Sun F, Zhang X, et al. CD24 targeting bi-specific antibody that simultaneously stimulates NKG2D enhances the efficacy of cancer immunotherapy. J Cancer Res Clin Oncol. 2019;145(5):1179–1190. doi:10.1007/s00432-019-02865-8.
  • MacDonald GC, Rasamoelisolo M, Entwistle J, et al. A phase I clinical study of VB4-845: weekly intratumoral administration of an anti-EpCAM recombinant fusion protein in patients with squamous cell carcinoma of the head and neck. Drug Des Devel Ther. 2009;2:105–114. doi:10.2147/dddt.s3442.
  • Maiti A, Daver NG. Lowering mTORC1 drives CAR T-cells home in acute myeloid leukemia. Clin Cancer Res. 2021;27(21):5739–5741. doi:10.1158/1078-0432.CCR-21-2574.
  • Gao G, Liao W, Shu P, et al. Targeting sphingosine 1-phosphate receptor 3 inhibits T-cell exhaustion and regulates recruitment of proinflammatory macrophages to improve antitumor efficacy of CAR-T cells against solid tumor. J Immunother Cancer. 2023;11(8):e006343. doi:10.1136/jitc-2022-006343.
  • Chen Y, E C-Y, Gong Z-W, et al. Chimeric antigen receptor-engineered T-cell therapy for liver cancer. Hepatobiliary Pancreat Dis Int. 2018;17(4):301–309. doi:10.1016/j.hbpd.2018.05.005.
  • Labrijn AF, Janmaat ML, Reichert JM, et al. Bispecific antibodies: a mechanistic review of the pipeline. Nat Rev Drug Discov. 2019;18(8):585–608. doi:10.1038/s41573-019-0028-1.
  • Eyvazi S, Farajnia S, Dastmalchi S, et al. Antibody based EpCAM targeted therapy of cancer, review and update. Curr Cancer Drug Targets. 2018;18(9):857–868. doi:10.2174/1568009618666180102102311.
  • Münz M, Murr A, Kvesic M, et al. Side-by-side analysis of five clinically tested anti-EpCAM monoclonal antibodies. Cancer Cell Int. 2010;10(1):44. doi:10.1186/1475-2867-10-44.
  • Kebenko M, Goebeler M-E, Wolf M, et al. A multicenter phase 1 study of solitomab (MT110, AMG 110), a bispecific EpCAM/CD3 T-cell engager (BiTE®) antibody construct, in patients with refractory solid tumors. Oncoimmunology. 2018;7(8):e1450710. doi:10.1080/2162402X.2018.1450710.
  • Hansson M, Gimsing P, Badros A, et al. A phase I Dose-Escalation study of antibody BI-505 in relapsed/refractory multiple myeloma. Clin Cancer Res. 2015;21(12):2730–2736. doi:10.1158/1078-0432.CCR-14-3090.
  • Juarez M, Schcolnik-Cabrera A, Dueñas-Gonzalez A. The multitargeted drug ivermectin: from an antiparasitic agent to a repositioned cancer drug. Am J Cancer Res. 2018;8:317–331.
  • Liu K, Xie F, Zhao T, et al. Targeting SOX2 protein with peptide aptamers for therapeutic gains against esophageal squamous cell carcinoma. Mol Ther. 2020;28(3):901–913. doi:10.1016/j.ymthe.2020.01.012.
  • Yao R, Zhang M, Zhou J, et al. Novel dual-targeting c-myc inhibitor D347-2761 represses myeloma growth via blocking c-myc/max heterodimerization and disturbing its stability. Cell Commun Signal. 2022;20(1):73. doi:10.1186/s12964-022-00868-6.
  • Massard C, Azaro A, Soria J-C, et al. First-in-human study of LY3039478, an oral notch signaling inhibitor in advanced or metastatic cancer. Ann Oncol. 2018;29(9):1911–1917. doi:10.1093/annonc/mdy244.
  • Minuzzo S, Agnusdei V, Pinazza M, et al. Targeting NOTCH1 in combination with antimetabolite drugs prolongs life span in relapsed pediatric and adult T-acute lymphoblastic leukemia xenografts. Exp Hematol Oncol. 2023;12(1):76. doi:10.1186/s40164-023-00439-6.
  • Karamanakos PN. Possible role for furazolidone in the treatment of glioblastoma multiforme. J Buon. 2013;18:1097.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.