289
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

A paradigm use of monoclonal antibodies-conjugated nanoparticles in breast cancer treatment: current status and potential approaches

ORCID Icon & ORCID Icon
Pages 45-56 | Received 23 Aug 2023, Accepted 12 Dec 2023, Published online: 28 Dec 2023

References

  • Weiner GJ. Building better monoclonal antibody-based therapeutics. Nat Rev Cancer. 2015;15(6):361–370. doi: 10.1038/nrc3930.
  • Zahavi D, Weiner L. Monoclonal antibodies in cancer therapy. Antibodies. 2020;9(3):34. doi: 10.3390/antib9030034.
  • Kuhn C, Weiner HL. Therapeutic anti-CD3 monoclonal antibodies: from bench to bedside. Immunotherapy. 2016;8(8):889–906. doi: 10.2217/imt-2016-0049.
  • Zhang C. Hybridoma technology for the generation of monoclonal antibodies. Methods Mol Biol. 2012;901:117–135. doi: 10.1007/978-1-61779-931-0_7.
  • Köhler G, Milstein C. Derivation of specific antibody-producing tissue culture and tumor lines by cell fusion. Eur J Immunol. 1976;6(7):511–519. doi: 10.1002/eji.1830060713.
  • Shin SU, Morrison SL. Production and properties of chimeric antibody molecules. Methods Enzymol. 1989;178:459–476. doi: 10.1016/0076-6879(89)78034-4.
  • Alfaleh MA, Alsaab HO, Mahmoud AB, et al. Phage display derived monoclonal antibodies: from bench to bedside. Front Immunol. 2020;11:1986. doi: 10.3389/fimmu.2020.01986.
  • Cruz E, Kayser V. Monoclonal antibody therapy of solid tumors: clinical limitations and novel strategies to enhance treatment efficacy. Biologics. 2019;13:33–51. doi: 10.2147/BTT.S166310.
  • Kimiz-Gebologlu I, Gulce-Iz S, Biray-Avci C. Monoclonal antibodies in cancer immunotherapy. Mol Biol Rep. 2018;45(6):2935–2940. doi: 10.1007/s11033-018-4427-x.
  • Posner J, Barrington P, Brier T, et al. Monoclonal antibodies: past, present and future. Handb Exp Pharmacol. 2019;260:81–141.
  • Vahidfar N, Aghanejad A, Ahmadzadehfar H, et al. Theranostic advances in breast cancer in nuclear medicine. Int J Mol Sci. 2021;22(9):4597. doi: 10.3390/ijms22094597.
  • Siminzar P, Tohidkia MR, Eppard E, et al. Recent trends in diagnostic biomarkers of tumor microenvironment. Mol Imaging Biol. 2023;25(3):464–482. doi: 10.1007/s11307-022-01795-1.
  • Al-Taie A, Sheta N. Clinically approved monoclonal antibodies-based immunotherapy: association with glycemic control and impact role of clinical pharmacist for cancer patient care. Clin Ther. 2023;S0149-2918(23)00408-3. doi: 10.1016/j.clinthera.2023.10.016.
  • Aghanejad A, Bonab SF, Sepehri M, et al. A review on targeting tumor microenvironment: the main paradigm shift in the mAb-based immunotherapy of solid tumors. Int J Biol Macromol. 2022;207:592–610. doi: 10.1016/j.ijbiomac.2022.03.057.
  • Buss NA, Henderson SJ, McFarlane M, et al. Monoclonal antibody therapeutics: history and future. Curr Opin Pharmacol. 2012;12(5):615–622. doi: 10.1016/j.coph.2012.08.001.
  • Mullard A. 2018 FDA drug approvals. Nat Rev Drug Discov. 2019;18(2):85–89. doi: 10.1038/d41573-019-00014-x.
  • García Merino A. Monoclonal antibodies. Basic features. Neurologia. 2011;26(5):301–306. doi: 10.1016/S2173-5808(11)70063-3.
  • Geng X, Kong X, Hu H, et al. Research and development of therapeutic mAbs: an analysis based on pipeline projects. Hum Vaccin Immunother. 2015;11(12):2769–2776. doi: 10.1080/21645515.2015.1074362.
  • Breedveld FC. Therapeutic monoclonal antibodies. Lancet. 2000;355(9205):735–740. doi: 10.1016/s0140-6736(00)01034-5.
  • Hinke SA, Cieniewicz AM, Kirchner T, et al. Unique pharmacology of a novel allosteric agonist/sensitizer insulin receptor monoclonal antibody. Mol Metab. 2018;10:87–99. doi: 10.1016/j.molmet.2018.01.014.
  • Parakh S, King D, Gan HK, et al. Current development of monoclonal antibodies in cancer therapy. Recent Results Cancer Res. 2020;214:1–70.
  • Scott AM, Wolchok JD, Old LJ. Antibody therapy of cancer. Nat Rev Cancer. 2012;12(4):278–287. doi: 10.1038/nrc3236.
  • American Cancer Society. Monoclonal antibodies to treat cancer; 2016. Available from: https://www.cancer.org/treatment/treatments-and-side-effects/treatmenttypes/ immunotherapy/monoclonal-antibodies.html; [cited 2019 Mar 27].
  • Bayer V. An overview of monoclonal antibodies. Semin Oncol Nurs. 2019;35(5):150927. doi: 10.1016/j.soncn.2019.08.006.
  • Liu JK. The history of monoclonal antibody development – progress, remaining challenges and future innovations. Ann Med Surg. 2014;3(4):113–116. doi: 10.1016/j.amsu.2014.09.001.
  • Fu Z, Li S, Han S, et al. Antibody drug conjugate: the "biological missile" for targeted cancer therapy. Signal Transduct Target Ther. 2022;7(1):93.
  • Lin W, Kurosawa K, Murayama A, et al. B-cell display-based one-step method to generate chimeric human IgG monoclonal antibodies. Nucleic Acids Res. 2011;39(3):e14. doi: 10.1093/nar/gkq1122.
  • Mak TM, Hanson BJ, Tan YJ. Chimerization and characterization of a monoclonal antibody with potent neutralizing activity across multiple influenza a H5N1 clades. Antiviral Res. 2014;107:76–83. doi: 10.1016/j.antiviral.2014.04.011.
  • Rita Costa A, Elisa Rodrigues M, Henriques M, et al. Guidelines to cell engineering for monoclonal antibody production. Eur J Pharm Biopharm. 2010;74(2):127–138. doi: 10.1016/j.ejpb.2009.10.002.
  • Shepard HM, Phillips GL, Thanos CD, et al. Developments in therapy with monoclonal antibodies and related proteins. Clin Med. 2017;17(3):220–232. doi: 10.7861/clinmedicine.17-3-220.
  • Waldmann H. Human monoclonal antibodies: the benefits of humanization. Methods Mol Biol. 2019;1904:1–10. doi: 10.1007/978-1-4939-8958-4_1.
  • Sedykh SE, Prinz VV, Buneva VN, et al. Bispecific antibodies: design, therapy, perspectives. Drug Des Devel Ther. 2018;12:195–208. doi: 10.2147/DDDT.S151282.
  • Ryman JT, Meibohm B. Pharmacokinetics of monoclonal antibodies. CPT Pharmacometr Syst Pharmacol. 2017;6(9):576–588. doi: 10.1002/psp4.12224.
  • Keizer RJ, Huitema AD, Schellens JH, et al. Clinical pharmacokinetics of therapeutic monoclonal antibodies. Clin Pharmacokinet. 2010;49(8):493–507. doi: 10.2165/11531280-000000000-00000.
  • Ovacik M, Lin K. Tutorial on monoclonal antibody pharmacokinetics and its considerations in early development. Clin Transl Sci. 2018;11(6):540–552. doi: 10.1111/cts.12567.
  • Baxter LT, Zhu H, Mackensen DG, et al. Physiologically based pharmacokinetic model for specific and nonspecific monoclonal antibodies and fragments in normal tissues and human tumor xenografts in nude mice. Cancer Res. 1994;54(6):1517–1528.
  • Molthoff CF, Pinedo HM, Schlüper HM, et al. Comparison of the pharmacokinetics, biodistribution and dosimetry of monoclonal antibodies OC125, OV-TL 3, and 139H2 as IgG and F(ab′)2 fragments in experimental ovarian cancer. Br J Cancer. 1992;65(5):677–683. doi: 10.1038/bjc.1992.144.
  • Waldmann TA, Strober W. Metabolism of immunoglobulins. Prog Allergy. 1969;13:1–110. doi: 10.1159/000385919.
  • Lammerts van Bueren JJ, Bleeker WK, Bøgh HO, et al. Effect of target dynamics on pharmacokinetics of a novel therapeutic antibody against the epidermal growth factor receptor: implications for the mechanisms of action. Cancer Res. 2006;66(15):7630–7638. doi: 10.1158/0008-5472.CAN-05-4010.
  • Duconge J, Fernández-Sánchez E, Macías A, et al. Monoclonal anti-EGF receptor antibody (ior-R3) pharmacokinetic study in tumor bearing nude mice: role of the receptor-mediated endocytosis on drug clearance. Eur J Drug Metab Pharmacokinet. 2002;27(2):101–105. doi: 10.1007/BF03190423.
  • Coffey GP, Stefanich E, Palmieri S, et al. In vitro internalization, intracellular transport, and clearance of an anti-CD11a antibody (Raptiva) by human T-cells. J Pharmacol Exp Ther. 2004;310(3):896–904. doi: 10.1124/jpet.104.067611.
  • Highlights of prescribing information; 2023 [cited 2023 Jan 19]. Available from: https://www.merck.com/product/usa/pi_circulars/k/keytruda/keytruda_pi.pdf
  • Drug approvals and databases; 2023 [cited 2023 Jan 11]. Available from: https://www.fda.gov/drugs/development-approval-process-drugs/drug-approvals-and-databases
  • Human medicine European Public Assessment Report (EPAR); 2023 [cited 2023 Jan 20]. Available from: https://www.ema.europa.eu/en/medicines
  • FDA; 2023 [cited 2023 Jan 20]. Available from: https://www.fdahelp.us/?gclid=Cj0KCQjwxMmhBhDJARIsANFGOStcSfEi-9kV1hdPv-cRqbNKbrXYuPnD0C9tJe88X8Pp1ENkFKJJOiwaAjBxEALw_wcB
  • Dang Y, Guan J. Nanoparticle-based drug delivery systems for cancer therapy. Smart Mater Med. 2020;1:10–19. doi: 10.1016/j.smaim.2020.04.001.
  • Naeimi R, Najafi R, Molaei P, et al. Nanoparticles: the future of effective diagnosis and treatment of colorectal cancer? Eur J Pharmacol. 2022;936:175350. doi: 10.1016/j.ejphar.2022.175350.
  • Hashemzadeh N, Dolatkhah M, Adibkia K, et al. Recent advances in breast cancer immunotherapy: the promising impact of nanomedicines. Life Sci. 2021;271:119110. doi: 10.1016/j.lfs.2021.119110.
  • Foroughi-Nia B, Barar J, Memar MY, et al. Progresses in polymeric nanoparticles for delivery of tyrosine kinase inhibitors. Life Sci. 2021;278:119642. doi: 10.1016/j.lfs.2021.119642.
  • Ferrari R, Sponchioni M, Morbidelli M, et al. Polymer nanoparticles for the intravenous delivery of anticancer drugs: the checkpoints on the road from the synthesis to clinical translation. Nanoscale. 2018;10(48):22701–22719. doi: 10.1039/c8nr05933k.
  • He H, Liu L, Morin EE, et al. Survey of clinical translation of cancer nanomedicines—lessons learned from successes and failures. Acc Chem Res. 2019;52(9):2445–2461. doi: 10.1021/acs.accounts.9b00228.
  • Wathoni N, Puluhulawa LE, Joni IM, et al. Monoclonal antibody as a targeting mediator for nanoparticle targeted delivery system for lung cancer. Drug Deliv. 2022;29(1):2959–2970. doi: 10.1080/10717544.2022.2120566.
  • Behl A, Wani ZA, Das NN, et al. Monoclonal antibodies in breast cancer: a critical appraisal. Crit Rev Oncol Hematol. 2023;183:103915. doi: 10.1016/j.critrevonc.2023.103915.
  • Cardoso MM, Peça IN, Roque AC. Antibody-conjugated nanoparticles for therapeutic applications. Curr Med Chem. 2012;19(19):3103–3127. doi: 10.2174/092986712800784667.
  • Liu H, Zhu X, Wei Y, et al. Recent advances in targeted gene silencing and cancer therapy by nanoparticle-based delivery systems. Biomed Pharmacother. 2023;157:114065. doi: 10.1016/j.biopha.2022.114065.
  • Chang J, Yu B, Saltzman WM, et al. Nanoparticles as a therapeutic delivery system for skin cancer prevention and treatment. JID Innov. 2023;3(4):100197. doi: 10.1016/j.xjidi.2023.100197.
  • Li J, Wang S, Fontana F, et al. Nanoparticles-based phototherapy systems for cancer treatment: current status and clinical potential. Bioact Mater. 2022;23:471–507.
  • Raza K, Kumar P, Kumar N, et al. Advances in nanomedicine for the delivery of therapeutic nucleic acids: pharmacokinetics and biodistribution of the nanoparticles. Amsterdam: Elsevier; 2017.
  • Onoue S, Yamada S, Chan H. Nanodrugs: pharmacokinetics and safety. Int J Nanomedicine. 2014;9:1025–1037.
  • Helmi O, Elshishiny F, Mamdouh W. Targeted doxorubicin delivery and release within breast cancer environment using PEGylated chitosan nanoparticles labeled with monoclonal antibodies. Int J Biol Macromol. 2021;184:325–338. doi: 10.1016/j.ijbiomac.2021.06.014.
  • Kumar A, Lale SV, Aji Alex MR, et al. Folic acid and trastuzumab conjugated redox responsive random multiblock copolymeric nanocarriers for breast cancer therapy: in-vitro and in-vivo studies. Colloids Surf B Biointerfaces. 2017;149:369–378. doi: 10.1016/j.colsurfb.2016.10.044.
  • Lee YH, Chang DS. Fabrication, characterization, and biological evaluation of anti-HER2 indocyanine green-doxorubicin-encapsulated PEG-b-PLGA copolymeric nanoparticles for targeted photochemotherapy of breast cancer cells. Sci Rep. 2017;7(1):46688. doi: 10.1038/srep46688.
  • Liu J, Wang P, Huang B, et al. Effective suppression of triple negative breast cancer by paclitaxel nanoparticles conjugated with transmembrane TNF-α monoclonal antibody. Int J Pharm. 2022;624:121969. doi: 10.1016/j.ijpharm.2022.121969.
  • Fathian Kolahkaj F, Derakhshandeh K, Khaleseh F, et al. Active targeting carrier for breast cancer treatment: monoclonal antibody conjugated epirubicin loaded nanoparticle. J Drug Deliv Sci Technol. 2019;53:101136. doi: 10.1016/j.jddst.2019.101136.
  • Niza E, Noblejas-López MDM, Bravo I, et al. Trastuzumab-targeted biodegradable nanoparticles for enhanced delivery of dasatinib in HER2+ metastatic breast cancer. Nanomaterials. 2019;9(12):1793. doi: 10.3390/nano9121793.
  • Dong Z, Huang Z, Li S, et al. Nanoparticles (NPs)-mediated systemic mRNA delivery to reverse trastuzumab resistance for effective breast cancer therapy. Acta Pharm Sin B. 2023;13(3):955–966. doi: 10.1016/j.apsb.2022.09.021.
  • Greene MK, Richards DA, Nogueira JCF, et al. Forming next-generation antibody–nanoparticle conjugates through the oriented installation of non-engineered antibody fragments. Chem Sci. 2017;9(1):79–87. doi: 10.1039/c7sc02747h.
  • Saqafi B, Rahbarizadeh F. Polyethyleneimine–polyethylene glycol copolymer targeted by anti-HER2 nanobody for specific delivery of transcriptionally targeted tBid containing construct. Artif Cells Nanomed Biotechnol. 2019;47(1):501–511. doi: 10.1080/21691401.2018.1549063.
  • Khoshtinat Nikkhoi S, Rahbarizadeh F, Ahmadvand D, et al. Multivalent targeting and killing of HER2 overexpressing breast carcinoma cells with methotrexate-encapsulated tetra-specific non-overlapping variable domain heavy chain anti-HER2 antibody-PEG-liposomes: in vitro proof-of-concept. Eur J Pharm Sci. 2018;122:42–50. doi: 10.1016/j.ejps.2018.06.019.
  • Lozano N, Al-Ahmady ZS, Beziere NS, et al. Monoclonal antibody-targeted PEGylated liposome-ICG encapsulating doxorubicin as a potential theranostic agent. Int J Pharm. 2015;482(1–2):2–10. doi: 10.1016/j.ijpharm.2014.10.045.
  • Guo C, Chen Y, Gao W, et al. Liposomal nanoparticles carrying anti-IL6R antibody to the tumour microenvironment inhibit metastasis in two molecular subtypes of breast cancer mouse models. Theranostics. 2017;7(3):775–788. doi: 10.7150/thno.17237.
  • Jain S, Deore SV, Ghadi R, et al. Tumor microenvironment responsive VEGF-antibody functionalized pH sensitive liposomes of docetaxel for augmented breast cancer therapy. Mater Sci Eng C Mater Biol Appl. 2021;121:111832. doi: 10.1016/j.msec.2020.111832.
  • Souto EB, Doktorovova S, Campos JR, et al. Surface-tailored anti-HER2/neu-solid lipid nanoparticles for site-specific targeting MCF-7 and BT-474 breast cancer cells. Eur J Pharm Sci. 2019;128:27–35. doi: 10.1016/j.ejps.2018.11.022.
  • Pindiprolu SKSS, Krishnamurthy PT, Dev C, et al. DR5 antibody conjugated lipid-based nanocarriers of gamma-secretase inhibitor for the treatment of triple negative breast cancer. Chem Phys Lipids. 2021;235:105033. doi: 10.1016/j.chemphyslip.2020.105033.
  • Dziawer Ł, Majkowska-Pilip A, Gaweł D, et al. Trastuzumab-modified gold nanoparticles labeled with 211At as a prospective tool for local treatment of HER2-Positive breast cancer. Nanomaterials. 2019;9(4):632. doi: 10.3390/nano9040632.
  • Stuchinskaya T, Moreno M, Cook MJ, et al. Targeted photodynamic therapy of breast cancer cells using antibody–phthalocyanine–gold nanoparticle conjugates. Photochem Photobiol Sci. 2011;10(5):822–831. doi: 10.1039/c1pp05014a.
  • Wang X, Liu Y, Wang S, et al. CD44-engineered mesoporous silica nanoparticles for overcoming multidrug resistance in breast cancer. Appl Surf Sci. 2015;332:308–317. doi: 10.1016/j.apsusc.2015.01.204.
  • Mozafarinia M, Karimi S, Farrokhnia M, et al. In vitro breast cancer targeting using trastuzumab-conjugated mesoporous silica nanoparticles: towards the new strategy for decreasing size and high drug loading capacity for drug delivery purposes in MSN synthesis. Microporous Mesoporous Mater. 2021;316:110950. doi: 10.1016/j.micromeso.2021.110950.
  • Ngamcherdtrakul W, Morry J, Gu S, et al. Cationic polymer modified mesoporous silica nanoparticles for targeted SiRNA delivery to HER2+ breast cancer. Adv Funct Mater. 2015;25(18):2646–2659. doi: 10.1002/adfm.201404629.
  • Woodman C, Vundu G, George A, et al. Applications and strategies in nanodiagnosis and nanotherapy in lung cancer. Semin Cancer Biol. 2021;69:349–364. doi: 10.1016/j.semcancer.2020.02.009.
  • Gowd V, Ahmad A, Tarique M, et al. Advancement of cancer immunotherapy using nanoparticles-based nanomedicine. Semin Cancer Biol. 2022;86(Pt 2):624–644. doi: 10.1016/j.semcancer.2022.03.026.
  • Özcan Bülbül E, Üstündağ Okur N, Mısırlı D, et al. Applying quality by design approach for the determination of potent paclitaxel loaded poly(lactic acid) based implants for localized tumor drug delivery. Int J Polym Mater Polym Biomater. 2022;72(12):968–983. doi: 10.1080/00914037.2022.2067538.
  • Wang S, Cheng K, Chen K, et al. Nanoparticle-based medicines in clinical cancer therapy. Nano Today. 2022;45:101512. doi: 10.1016/j.nantod.2022.101512.
  • Cryer AM, Thorley AJ. Nanotechnology in the diagnosis and treatment of lung cancer. Pharmacol Ther. 2019;198:189–205. doi: 10.1016/j.pharmthera.2019.02.010.
  • Ashton JR, Gottlin EB, Patz EFJr, et al. A comparative analysis of EGFR-targeting antibodies for gold nanoparticle CT imaging of lung cancer. PLOS One. 2018;13(11):e0206950. doi: 10.1371/journal.pone.0206950.
  • Dheyab MA, Aziz AA, Khaniabadi PM, et al. Gold nanoparticles-based photothermal therapy for breast cancer. Photodiagn Photodyn Ther. 2023;42:103312. doi: 10.1016/j.pdpdt.2023.103312.
  • Song Y, Zhou B, Du X, et al. Folic acid (FA)-conjugated mesoporous silica nanoparticles combined with MRP-1 siRNA improves the suppressive effects of myricetin on non-small cell lung cancer (NSCLC). Biomed Pharmacother. 2020;125:109561. doi: 10.1016/j.biopha.2019.109561.
  • Wu SY, Wu FG, Chen X. Antibody-incorporated nanomedicines for cancer therapy. Adv Mater. 2022;34(24):e2109210. doi: 10.1002/adma.202109210.
  • Marques AC, Costa PJ, Velho S, et al. Functionalizing nanoparticles with cancer-targeting antibodies: a comparison of strategies. J Control Release. 2020;320:180–200. doi: 10.1016/j.jconrel.2020.01.035.
  • Mundekkad D, Cho WC. Nanoparticles in clinical translation for cancer therapy. Int J Mol Sci. 2022;23(3):1685. doi: 10.3390/ijms23031685.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.