178
Views
1
CrossRef citations to date
0
Altmetric
Review Articles

Nanoparticles toxicity: an overview of its mechanism and plausible mitigation strategies

ORCID Icon, ORCID Icon, , , , , , , , , , ORCID Icon & show all
Pages 457-469 | Received 17 Aug 2023, Accepted 30 Jan 2024, Published online: 19 Feb 2024

References

  • Hussain Z, Arooj M, Malik A, et al. Nanomedicines as emerging platform for simultaneous delivery of cancer therapeutics: new developments in overcoming drug resistance and optimizing anticancer efficacy. Artif Cells Nanomed Biotechnol. 2018;46(sup2):1015–1024. doi: 10.1080/21691401.2018.1478420.
  • Buchman JT, Hudson-Smith NV, Landy KM, et al. Understanding nanoparticle toxicity mechanisms to inform redesign strategies to reduce environmental impact. Acc Chem Res. 2019;52(6):1632–1642. doi: 10.1021/acs.accounts.9b00053.
  • Chaoxiu R, Hu X, Zhou Q. Influence of environmental factors on nanotoxicity and knowledge gaps thereof. NanoImpact. 2016;2:82–92. doi: 10.1016/j.impact.2016.07.002.
  • Hussain Z, Thu HE, Haider M, et al. A review of imperative concerns against clinical translation of nanomaterials: ­unwanted biological interactions of nanomaterials cause serious nanotoxicity. J Drug Delivery Sci Technol. 2020;59:101867. doi: 10.1016/j.jddst.2020.101867.
  • Babiker F, Benter IF, Akhtar S. Nanotoxicology of dendrimers in the mammalian heart: ex vivo and in vivo administration of G6 PAMAM nanoparticles impairs recovery of cardiac function following ischemia-reperfusion injury. Int J Nanomedicine. 2020;15(15):4393–4405. doi: 10.2147/IJN.S255202.
  • Long TC, Saleh N, Tilton RD, et al. Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2): implications for nanoparticle neurotoxicity. Environ Sci Technol. 2006;40(14):4346–4352. doi: 10.1021/es060589n.
  • Valdiglesias V, Costa C, Sharma V, et al. Comparative study on effects of two different types of titanium dioxide nanoparticles on human neuronal cells. Food Chem Toxicol. 2013;57:352–361. doi: 10.1016/j.fct.2013.04.010.
  • Fujioka K, Hanada S, Inoue Y, et al. Effects of silica and titanium oxide particles on a human neural stem cell line: morphology, mitochondrial activity, and gene expression of differentiation markers. Int J Mol Sci. 2014;15(7):11742–11759. doi: 10.3390/ijms150711742.
  • Hongjun X, Wu J. Silica nanoparticles induce alpha-synuclein induction and aggregation in PC12-cells. Chem Biol Interact. 2016;258:197–204. doi: 10.1016/j.cbi.2016.09.006.
  • Rauscher H, Rasmussen K, Sokull-Klüttgen B. Regulatory aspects of nanomaterials in the EU. Chem Ing Tech. 2017;89(3):224–231. doi: 10.1002/cite.201600076.
  • Donahue ND, Acar H, Wilhelm S. Concepts of nanoparticle cellular uptake, intracellular trafficking, and kinetics in nanomedicine. Adv Drug Deliv Rev. 2019;143:68–96. doi: 10.1016/j.addr.2019.04.008.
  • Knaapen AM, Borm PJ, Albrecht C, et al. Inhaled particles and lung cancer. Part A: mechanisms. Int J Cancer. 2004;109(6):799–809. doi: 10.1002/ijc.11708.
  • Sobota JM, Imlay JA. Iron enzyme ribulose-5-phosphate 3-epimerase in Escherichia coli is rapidly damaged by hydrogen peroxide but can be protected by manganese. Proc Natl Acad Sci U S A. 2011;108(13):5402–5407. doi: 10.1073/pnas.1100410108.
  • Mishra M, Panda M. Reactive oxygen species: the root cause of nanoparticle-induced toxicity in Drosophila melanogaster. Free Radic Res. 2021;55(6):671–687. doi: 10.1080/10715762.2021.1914335.
  • Xiao L, Liu C, Chen X, et al. Zinc oxide nanoparticles induce renal toxicity through reactive oxygen species. Food Chem Toxicol. 2016;90:76–83. doi: 10.1016/j.fct.2016.02.002.
  • Seiffert J, Hussain F, Wiegman C, et al. Pulmonary toxicity of instilled silver nanoparticles: influence of size, coating and rat strain. PLoS One. 2015;10(3):e0119726. doi: 10.1371/journal.pone.0119726.
  • Sharma B, McLeland CB, Potter TM, et al. Assessing NLRP3 inflammasome activation by nanoparticles. Characterization of nanoparticles intended for drug delivery. 2018;135–47.
  • Mensch AC, Hernandez RT, Kuether JE, et al. Natural organic matter concentration impacts the interaction of functionalized diamond nanoparticles with model and actual bacterial membranes. Environ Sci Technol. 2017;51(19):11075–11084. doi: 10.1021/acs.est.7b02823.
  • Barbasz A, Oćwieja M, Roman M. Toxicity of silver nanoparticles towards tumoral human cell lines U-937 and HL-60. Colloids Surf B Biointerface. 2017;156:397–404. doi: 10.1016/j.colsurfb.2017.05.027.
  • Mu Q, Jiang G, Chen L, et al. Chemical basis of interactions between engineered nanoparticles and biological systems. Chem Rev. 2014;114(15):7740–7781. doi: 10.1021/cr400295a.
  • Osman NM, Sexton DW, Saleem IY. Toxicological assessment of nanoparticle interactions with the pulmonary system. Nanotoxicology. 2020;14(1):21–58. doi: 10.1080/17435390.2019.1661043.
  • Déciga-Alcaraz A, Delgado-Buenrostro NL, Ispanixtlahuatl-Meráz O, et al. Irreversible disruption of the cytoskeleton as induced by non-cytotoxic exposure to titanium dioxide nanoparticles in lung epithelial cells. Chem Biol Interact. 2020;323:109063. doi: 10.1016/j.cbi.2020.109063.
  • Salnikov V, Lukyánenko YO, Frederick CA, et al. Probing the outer mitochondrial membrane in cardiac mitochondria with nanoparticles. Biophys J. 2007;92(3):1058–1071. doi: 10.1529/biophysj.106.094318.
  • Saifi MA, Khan W, Godugu C. Cytotoxicity of nanomaterials: using nanotoxicology to address the safety concerns of nanoparticles. Pharm Nanotechnol. 2018;6(1):3–16. doi: 10.2174/2211738505666171023152928.
  • Doak SH, Dusinska M. NanoGenotoxicology: present and the future. Mutagenesis. 2017;32(1):1–4. doi: 10.1093/mutage/gew066.
  • Falck GCM, Lindberg HK, Suhonen S, et al. Genotoxic effects of nanosized and fine TiO2. Hum Exp Toxicol. 2009;28(6-7):339–352. doi: 10.1177/0960327109105163.
  • Kheraldine H, Rachid O, Habib AM, et al. Emerging innate biological properties of nano-drug delivery systems: a focus on PAMAM dendrimers and their clinical potential. Adv Drug Deliv Rev. 2021;178:113908. doi: 10.1016/j.addr.2021.113908.
  • Sun Y, Guo F, Zou Z, et al. Cationic nanoparticles directly bind angiotensin-converting enzyme 2 and induce acute lung injury in mice. Partic Fibre Toxicol. 2015;12:4.
  • Tsoi KM, MacParland SA, Ma XZ, et al. Mechanism of hard-nanomaterial clearance by the liver. Nat Mater. 2016;15(11):1212–1221. doi: 10.1038/nmat4718.
  • Yao Y, Zang Y, Qu J, et al. The toxicity of metallic nanoparticles on liver: the subcellular damages, mechanisms, and outcomes. Int J Nanomed. 2019;14:8787–8804. doi: 10.2147/IJN.S212907.
  • Jin Y, Zhang S, Tao R, et al. Oral exposure of mice to cadmium (II), chromium (VI) and their mixture induce oxidative-and endoplasmic reticulum-stress mediated apoptosis in the livers. Environ Toxicol. 2016;31(6):693–705. doi: 10.1002/tox.22082.
  • Almansour M, Alarifi S, Jarrar B. In vivo investigation on the chronic hepatotoxicity induced by intraperitoneal administration of 10-nm silicon dioxide nanoparticles. Int J Nanomed. 2018;13:2685–2696. doi: 10.2147/IJN.S162847.
  • Tiwari DK, Jin T, Behari J. Dose-dependent in-vivo toxicity assessment of silver nanoparticle in wistar rats. Toxicol Mech Method. 2011;21(1):13–24. doi: 10.3109/15376516.2010.529184.
  • Mirshafiee V, Sun B, Chang CH, et al. Toxicological profiling of metal oxide nanoparticles in liver context reveals pyroptosis in kupffer cells and macrophages versus apoptosis in hepatocytes. ACS Nano. 2018;12(4):3836–3852. doi: 10.1021/acsnano.8b01086.
  • Jia J, Li F, Zhou H, et al. Oral exposure to silver nanoparticles or silver ions may aggravate fatty liver disease in overweight mice. Environ Sci Technol. 2017;51(16):9334–9343. doi: 10.1021/acs.est.7b02752.
  • Zhu B, Li Y, Lin Z, et al. Silver nanoparticles induce HePG-2 cells apoptosis through ROS-mediated signaling pathways. Nanoscale Res Lett. 2016;11(1):198. doi: 10.1186/s11671-016-1419-4.
  • Teleanu DM, Chircov C, Grumezescu AM, et al. Blood brain deliverymethods using nanotechnology. Pharmaceutics. 2018;10(4):269. doi: 10.3390/pharmaceutics10040269.
  • Zhao N, Francis NL, Calvelli HR, et al. Microglia-targeting nanotherapeutics for neurodegenerative diseases. APL Bioeng. 2020;4(3):030902. doi: 10.1063/5.0013178.
  • Ze Y, Hu R, Wang X, et al. Neurotoxicity and gene-expressed profile in brain-injured mice caused by exposure to titanium dioxide nanoparticles. J Biomed Mater Res A. 2014102;102(2):470–478. doi: 10.1002/jbm.a.34705.
  • Onoda A, Takeda K, Umezawa M. Dose-dependent induction of astrocyte activation and reactive astrogliosis in mouse brain following maternal exposure to carbon black nanoparticle. Part Fibre Toxicol. 2017;14(1):4. doi: 10.1186/s12989-017-0184-6.
  • Wu T, Meng T. Review of the effects of manufactured nanoparticles on mammalian target organs. J Appl Toxicol. 2018;38(1):25–40. doi: 10.1002/jat.3499.
  • Sengul AB, Asmatulu E. Toxicity of metal and metal oxide nanoparticles: a review. Environ Chem Lett. 2020;18(5):1659–1683. doi: 10.1007/s10311-020-01033-6.
  • Yang Y, Qin Z, Zeng W, et al. Toxicity assessment of nanoparticles in various systems and organs. Nanotechnol Rev. 2017;6(3):279–289. doi: 10.1515/ntrev-2016-0047.
  • Li X, Chen J, Tang L, et al. Mercury isotope signatures of a pre-calciner cement plant in southwest China. J Hazard Mater. 2021;401:123384. doi: 10.1016/j.jhazmat.2020.123384.
  • Donaldson K, Aitken R, Tran L, et al. Carbon nanotubes: a review of their properties in relation to pulmonary toxicology and workplace safety. Toxicol Sci. 2006;92(1):5–22. doi: 10.1093/toxsci/kfj130.
  • Nabi SU, Ali SI, Rather MA, et al. Organoids: a new approach in toxicity testing of nanotherapeutics. J Appl Toxicol. 2022;42(1):52–72. doi: 10.1002/jat.4206.
  • Ahmad J, Akhter S, Rizwanullah M, et al. Nanotechnology-based inhalation treatments for lung cancer: state of the art. Nanotechnol Sci Appl. 2015;8:55–66. doi: 10.2147/NSA.S49052.
  • Müller RH, Gohla S, Keck CM. State of the art of nanocrystals–special features, production, nanotoxicology aspects and intracellular delivery. Eur J Pharm Biopharm. 2011;78(1):1–9. doi: 10.1016/j.ejpb.2011.01.007.
  • Shvedova AA, Kisin ER, Porter D, et al. Mechanisms of pulmonary toxicity and medical applications of carbon nanotubes: two faces of janus? Pharmacol Ther. 2009;121(2):192–204. doi: 10.1016/j.pharmthera.2008.10.009.
  • Miller MR, Raftis JB, Langrish JP, et al. Inhaled nanoparticles accumulate at sites of vascular disease. ACS Nano. 2017;11(5):4542–4552. doi: 10.1021/acsnano.6b08551.
  • Park EJ, Yi J, Chung KH, et al. Oxidative stress and apoptosis induced by titanium dioxide nanoparticles in cultured BEAS-2B cells. Toxicol Lett. 2008;180(3):222–229. doi: 10.1016/j.toxlet.2008.06.869.
  • Hussain S, Al-Nsour F, Rice AB, et al. Cerium dioxide nanoparticles induce apoptosis and autophagy in human peripheral blood monocytes. ACS Nano. 2012;6(7):5820–5829. doi: 10.1021/nn302235u.
  • Długosz O, Szostak K, Staroń A, et al. Methods for reducing the toxicity of metal and metal oxide NPs as biomedicine. Materials (Basel). 2020;13(2):13. doi: 10.3390/ma13020279.
  • Wang XM, Wu XW, Zhao XY, et al. Exposure-time-dependent subcellular staging of gold nanoparticles deposition and vesicle destruction in mice livers. Nanomedicine. 2021;34:102393. doi: 10.1016/j.nano.2021.102393.
  • Caster JM, Stephanie KY, Patel AN, et al. Effect of particle size on the biodistribution, toxicity, and efficacy of drug-loaded polymeric nanoparticles in chemoradiotherapy. Nanomedicine. 2017;13(5):1673–1683. doi: 10.1016/j.nano.2017.03.002.
  • Breza M, Šimon P. On shape dependence of the toxicity of rutile nanoparticles. J Nanopart Res. 2020;22(3):58. doi: 10.1007/s11051-020-4773-1.
  • Visalli G, Facciolà A, Currò M, et al. Mitochondrial impairment induced by Sub-chronic exposure to multi-walled carbon nanotubes. Int J Environ Res Public Health. 2019;16(5):792. doi: 10.3390/ijerph16050792.
  • Salazar-Alvarez G, Qin J, Sepelák V, et al. Cubic versus spherical magnetic nanoparticles: the role of surface anisotropy. J Am Chem Soc. 2008;130(40):13234–13239. doi: 10.1021/ja0768744.
  • Sánchez-López E, Gomes D, Esteruelas G, et al. Metal-Based nanoparticles as antimicrobial agents: an overview. Nanomaterials (Basel). 2020;10(2):10. doi: 10.3390/nano10020292.
  • Zhang N, Xiong G, Liu Z. Toxicity of methal based nanoparticles: challenges in the nano era. Front Bioeng Biotechnol. 2022;10:1001572. doi: 10.3389/fbioe.2022.1001572.
  • Hwang R, Mirshafiee V, Zhu Y, et al. Current approaches for safer design of engineered nanomaterials. Ecotoxicol Environ Saf. 2018;166:294–300. doi: 10.1016/j.ecoenv.2018.09.077.
  • Wang X, Xia T, Ntim SA, et al. Dispersal state of multiwalled carbon nanotubes elicits profibrogenic cellular responses that correlate with fibrogenesis biomarkers and fibrosis in the murine lung. ACS Nano. 2011;5(12):9772–9787. doi: 10.1021/nn2033055.
  • Debayle M, Balloul E, Dembele F, et al. Zwitterionic polymer ligands: an ideal surface coating to totally suppress protein-nanoparticle corona formation? Biomaterials. 2019;219:119357. doi: 10.1016/j.biomaterials.2019.119357.
  • Patlolla AK, Kumari SA, Tchounwou PB. A comparison of poly-ethylene-glycol-coated and uncoated gold nanoparticle-mediated hepatotoxicity and oxidative stress in sprague dawley rats. Int J Nanomedicine. 2019;14:639–647. doi: 10.2147/IJN.S185574.
  • Ashique S, Upadhyay A, Hussain A, et al. Green biogenic silver nanoparticles, therapeutic uses, recent advances, risk assessment, challenges, and future perspectives. J Drug Deliver Sci Technol. 2022;77:103876. doi: 10.1016/j.jddst.2022.103876.
  • Karakoti AS, Kuchibhatla SV, Baer DR, et al. Self-assembly of cerium oxide nanostructures in mice molds. Small. 2008;4(8):1210–1216. doi: 10.1002/smll.200800219.
  • Lai RWS, Kang HM, Zhou GJ, et al. Hydrophobic surface coating can reduce toxicity of zinc oxide nanoparticles to the marine copepod Tigriopus japonicus. Environ Sci Technol. 2021;55(10):6917–6925. doi: 10.1021/acs.est.1c01300.
  • Zhang X, Zhang H, Liang X, et al. Iron oxide nanoparticles induce autophagosome accumulation through multiple mechanisms: lysosome impairment, mitochondrial damage, and ER stress. Mol Pharm. 2016;13(7):2578–2587. doi: 10.1021/acs.molpharmaceut.6b00405.
  • Dumoga S, Rai Y, Bhatt AN, et al. Block copolymer based nanoparticles for theranostic intervention of cervical cancer: synthesis, pharmacokinetics, and in vitro/in vivo evaluation in HeLa xenograft models. ACS Appl Mater Interface. 2017;9(27):22195–22211. doi: 10.1021/acsami.7b04982.
  • Nosrati H, Sefidi N, Sharafi A, et al. Bovine serum albumin (BSA) coated iron oxide magnetic nanoparticles as biocompatible carriers for curcumin-anticancer drug. Bioorg Chem. 2018;76:501–509. doi: 10.1016/j.bioorg.2017.12.033.
  • Kakkar D, Mazzaferro S, Thevenot J, et al. Amphiphilic PEO-b-PBLG diblock and PBLG-b-PEO-b-PBLG triblock copolymer based nanoparticles: doxorubicin loading and in vitro evaluation. Macromol Biosci. 2015;15(1):124–137. doi: 10.1002/mabi.201400451.
  • Dumoga S, Dey N, Kaur A, et al. Novel biotin-functionalized lipidic nanocarriers for encapsulating BpT and Bp4eT iron chelators: evaluation of potential anti-tumour efficacy by in vitro, in vivo and pharmacokinetic studies in A549 mice models. RSC Adv. 2016;6(66):61585–61598. doi: 10.1039/C6RA03079C.
  • Chia SL, Leong DT. Reducing ZnO nanoparticles toxicity through silica coating. Heliyon. 2016;2(10):e00177. doi: 10.1016/j.heliyon.2016.e00177.
  • Sharma A, Sharma N, Singh S, et al. Review on theranostic and neuroprotective applications of nanotechnology in multiple sclerosis. J Drug Delivery Sci Technol. 2023;81:104220. doi: 10.1016/j.jddst.2023.104220.
  • Gnach A, Lipinski T, Bednarkiewicz A, et al. Upconverting nanoparticles: assessing the toxicity. Chem Soc Rev. 2015;44(6):1561–1584. doi: 10.1039/c4cs00177j.
  • Hwang HM, Ray PC, Yu H, et al. Toxicology of designer/engineered metallic nanoparticles. In: Luque R, Varma RS, editors. Sustainable preparation of metal nanoparticles. Royal Society of Chemistry; 2012. p. 190–212.
  • Das B, Dadhich P, Pal P, et al. Doping of carbon nanodots for saving cells from silver nanotoxicity: a study on recovering osteogenic differentiation potential. Toxicol in Vitro. 2019;57:81–95. doi: 10.1016/j.tiv.2019.02.015.
  • Pounraj S, Somu P, Paul S. Chitosan and graphene oxide hybrid nanocomposite film doped with silver nanoparticles efficiently prevents biofouling. Appl Surf Sci. 2018;452:487–497. doi: 10.1016/j.apsusc.2018.05.009.
  • Ermis E, Bagheri Z, Behroodi E, et al. Red emissive N–S co-doped carbon dots for live imaging of tumor spheroid in the microfluidic device. J Sci: Adv Mater Devices. 2022;7:100404.
  • Das PP, Chaudhary V, Ahmad F, et al. Effect of nanotoxicity and enhancement in performance of polymer composites using nanofillers: a state-of-the-art review. Polym Compos. 2021;42(5):2152–2170. doi: 10.1002/pc.25968.
  • Wang Y, Santos A, Evdokiou A, et al. An overview of nanotoxicity and nanomedicine research: principles, progress and implications for cancer therapy. J Mater Chem B. 2015;3(36):7153–7172. doi: 10.1039/c5tb00956a.
  • Zangabad PS, Karimi M, Mehdizadeh F, et al. Nanocaged platforms: modification, drug delivery and nanotoxicity. Opening synthetic cages to release the tiger. Nanoscale. 2017;9(4):1356–1392. doi: 10.1039/c6nr07315h.
  • Huerta-Ángeles G, Brandejsová M, Novotný J, et al. Grafting of steroids to hyaluronan towards the design of delivery systems for antioxidants: the role of hydrophobic core. Carbohydr Polym. 2018;193:383–392. doi: 10.1016/j.carbpol.2018.04.021.
  • Huang Y, Ding L, Li C, et al. Safety issue of changed nanotoxicity of zinc oxide nanoparticles in the multicomponent system. Part Part Syst Charact. 2019;36(10):1900214. doi: 10.1002/ppsc.201900214.
  • Meng Y, Liu R, Zhu M, et al. Exploring the interactions between flawed materials and YAP65 to reveal the role of vacancy defects in MoS 2 sheet nanotoxicity. J Nanopart Res. 2020;22(7):1–11. doi: 10.1007/s11051-020-04945-0.
  • Petković J, Zegura B, Stevanović M, et al. DNA damage and alterations in expression of DNA damage responsive genes induced by TiO2 nanoparticles in human hepatoma HepG2 cells. Nanotoxicology. 2011;5(3):341–353. doi: 10.3109/17435390.2010.507316.
  • Akhtar S, Chandrasekhar B, Yousif MH, et al. Chronic administration of nano-sized PAMAM dendrimers in vivo inhibits EGFR-ERK1/2-ROCK signaling pathway and attenuates diabetes-induced vascular remodeling and dysfunction. Nanomedicine. 2019;18:78–89. doi: 10.1016/j.nano.2019.02.012.
  • Li W, Zhang X, Hao X, et al. Shape design of high drug payload nanoparticles for more effective cancer therapy. Chem Commun (Camb). 2020;49(93):10989–10991. doi: 10.1039/c3cc46718j.
  • Møller P, Christophersen DV, Jensen DM, et al. Role of oxidative stress in carbon nanotube-generated health effects. Arch Toxicol. 2014;88(11):1939–1964. doi: 10.1007/s00204-014-1356-x.
  • Tomás-Zapico C, Coto-Montes A. A proposed mechanism to explain the stimulatory effect of melatonin on antioxidative enzymes. J Pineal Res. 2005;39(2):99–104. doi: 10.1111/j.1600-079X.2005.00248.x.
  • Kwak MK, Wakabayashi N, Greenlaw JL, et al. Antioxidants enhance mammalian proteasome expression through the Keap1-Nrf2 signaling pathway. Mol Cell Biol. 2003;23(23):8786–8794. doi: 10.1128/MCB.23.23.8786-8794.2003.
  • Li CW, Li LL, Chen S, et al. Antioxidant nanotherapies for the treatment of inflammatory diseases. Front Bioeng Biotechnol. 2020;8:200. doi: 10.3389/fbioe.2020.00200.
  • Forest V, Leclerc L, Hochepied JF, et al. Impact of cerium oxide nanoparticles shape on their in vitro cellular toxicity. Toxicol in Vitro. 2017;38:136–141. doi: 10.1016/j.tiv.2016.09.022.
  • Zheng M, Lu J, Zhao D. Effects of starch-coating of magnetite nanoparticles on cellular uptake, toxicity and gene expression profiles in adult zebrafish. Sci Total Environ. 2018;622-623:930–941. doi: 10.1016/j.scitotenv.2017.12.018.
  • Ruiz A, Gutiérrez L, Cáceres-Vélez P, et al. Biotransformation of magnetic nanoparticles as a function of coating in a rat model. Nanoscale. 2015;7(39):16321–16329. doi: 10.1039/c5nr03780h.
  • Wang X, Xia T, Duch MC, et al. Pluronic F108 coating decreases the lung fibrosis potential of multiwall carbon nanotubes by reducing lysosomal injury. Nano Lett. 2012;12(6):3050–3061. doi: 10.1021/nl300895y.
  • Majeed A, Javed F, Akhtar S, et al. Green synthesized selenium doped zinc oxide nano-antibiotic: synthesis, characterization and evaluation of antimicrobial, nanotoxicity and teratogenicity potential. J Mater Chem B. 2020;8(36):8444–8458. doi: 10.1039/d0tb01553a.
  • Rashid M, Sterbinsky GE, Pinilla MAG, et al. Kinetic and mechanistic evaluation of inorganic arsenic species adsorption onto humic acid grafted magnetite nanoparticles. J Phys Chem C. 2018;122(25):13540–13547. doi: 10.1021/acs.jpcc.7b12438.
  • Szwed M, Sønstevold T, Øverbye A, et al. Small variations in nanoparticle structure dictate differential cellular stress responses and mode of cell death. Nanotoxicology. 2019;13(6):761–782. doi: 10.1080/17435390.2019.1576238.
  • Kucharczyk K, Kaczmarek K, Jozefczak A, et al. Hyperthermia treatment of cancer cells by the application of targeted silk/iron oxide composite spheres. Mater Sci Eng C Mater Biol Appl. 2021;120:111654. doi: 10.1016/j.msec.2020.111654.
  • Marmiroli M, Pagano L, Pasquali F, et al. A genome-wide nanotoxicology screen of Saccharomyces cerevisiae mutants reveals the basis for cadmium sulphide quantum dot tolerance and sensitivity. Nanotoxicology. 2016;10(1):84–93. doi: 10.3109/17435390.2015.1019586.
  • Omidi Y, Barar J, Akhtar S. Toxicogenomics of cationic lipid-based vectors for gene therapy: impact of microarray technology. Curr Drug Deliv. 2005;2(4):429–441. doi: 10.2174/156720105774370249.
  • Akhtar S. Cationic nanosystems for the delivery of small interfering ribonucleic acid therapeutics: a focus on toxicogenomics. Expert Opin Drug Metab Toxicol. 2010;6(11):1347–1362. doi: 10.1517/17425255.2010.518611.
  • Yang H, Kozicky L, Saferali A, et al. Endosomal pH modulation by peptide-gold nanoparticle hybrids enables potent anti-inflammatory activity in phagocytic immune cells. Biomaterials. 2016;111:90–102. doi: 10.1016/j.biomaterials.2016.09.032.
  • Ambrosone A, Scotto di Vettimo MR, Malvindi MA, et al. Impact of amorphous SiO2 nanoparticles on a living organism: morphological, behavioral, and molecular biology implications. Front Bioeng Biotechnol. 2014;2:37.
  • Dwivedi S, Saquib Q, Ahmad B, et al. Toxicogenomics: a new paradigm for nanotoxicity evaluation. Adv Exp Med Biol. 2018;1048:143–161. doi: 10.1007/978-3-319-72041-8_9.
  • Omidi Y, Hollins AJ, Benboubetra M, et al. Toxicogenomics of non-viral vectors for gene therapy: a microarray study of lipofectin- and oligofectamine-induced gene expression changes in human epithelial cells. J Drug Target. 2003;11(6):311–323. doi: 10.1080/10611860310001636908.
  • Hollins AJ, Omidi Y, Benter IF, et al. Toxicogenomics of drug delivery systems: exploiting delivery system-induced changes in target gene expression to enhance siRNA activity. J Drug Target. 2007;15(1):83–88. doi: 10.1080/10611860601151860.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.