220
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Aptamer as a targeted approach towards treatment of breast cancer

, , ORCID Icon, & ORCID Icon
Pages 510-528 | Received 16 Nov 2023, Accepted 16 Mar 2024, Published online: 03 Apr 2024

References

  • Ditsch N, Wöcke A, Untch M, et al. AGO recommendations for the diagnosis and treatment of patients with early breast cancer: update 2022. Breast Care. 2022;17(4):403–420. doi: 10.1159/000524879.
  • Sedeta ET, Jobre B, Avezbakiyev B. Breast cancer: global patterns of incidence, mortality, and trends. J Clin Oncol. 2023;41(16 Suppl):10528–10528. doi: 10.1200/JCO.2023.41.16_suppl.10528.
  • Wilkinson L, Gathani T. Understanding breast cancer as a global health concern. Br J Radiol. 2022;95(1130):20211033. doi: 10.1259/bjr.20211033.
  • Shetty V, Kundapur R, Chandramohan S, et al. Dietary risk with other risk factors of breast cancer. Indian J Community Med. 2021;46(3):396–400. doi: 10.4103/ijcm.IJCM_227_20.
  • Tiede B, Kang Y. From milk to malignancy: the role of mammary stem cells in development, pregnancy and breast cancer. Cell Res. 2011;21(2):245–257. doi: 10.1038/cr.2011.11.
  • Yang X, Wang H, Jiao B. Mammary gland stem cells and their application in breast cancer. Oncotarget. 2017;8(6):10675–10691. doi: 10.18632/oncotarget.12893.
  • Celià-Terrassa T. Mammary stem cells and breast cancer stem cells: molecular connections and clinical implications. Biomedicines. 2018;6(2):50. doi: 10.3390/biomedicines6020050.
  • Feng Y, Spezia M, Huang S, et al. Breast cancer development and progression: risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis. Genes Dis. 2018;5(2):77–106. doi: 10.1016/j.gendis.2018.05.001.
  • Gam LH. Breast cancer and protein biomarkers. World J Exp Med. 2012;2(5):86–91. doi: 10.5493/wjem.v2.i5.86.
  • Calderwood SK. Heat shock proteins in breast cancer progression–a suitable case for treatment? Int J Hyperthermia. 2010;26(7):681–685. doi: 10.3109/02656736.2010.490254.
  • Naz S, Shamoon M, Wang R, et al. Advances in therapeutic implications of inorganic drug delivery nano-Platforms for cancer. Int J Mol Sci. 2019;20(4):965. doi: 10.3390/ijms20040965.
  • Kumari L, Mishra L, Patel P, et al. Emerging targeted therapeutic strategies for the treatment of triple-negative breast cancer. J Drug Target. 2023;31(9):889–907.
  • Wei G, Wang Y, Yang G, et al. Recent progress in nanomedicine for enhanced cancer chemotherapy. Theranostics. 2021;11(13):6370–6392. doi: 10.7150/thno.57828.
  • Kurmi BD, Paliwal SR. Development and optimization of TPGS-based stealth liposome of doxorubicin using Box-Behnken design: characterization, hemocompatibility, and cytotoxicity evaluation in breast cancer cells. J Liposome Res. 2022;32(2):129–145. doi: 10.1080/08982104.2021.1903034.
  • Kurmi BD, Paliwal R, Paliwal SR. Dual cancer targeting using estrogen functionalized chitosan nanoparticles loaded with doxorubicin-estrone conjugate: a quality by design approach. Int J Biol Macromol. 2020;164:2881–2894. doi: 10.1016/j.ijbiomac.2020.08.172.
  • Kurmi BD, Patel P, Paliwal R, et al. Multifunctional nanotherapeutics for intracellular trafficking of doxorubicin against breast cancer. Nanomedicine. 2023;18(19):1261–1279. doi: 10.2217/nnm-2023-0087.
  • Zhu G, Zhang H, Jacobson O, et al. Combinatorial screening of DNA aptamers for molecular imaging of HER2 in cancer. Bioconjug Chem. 2017;28(4):1068–1075. doi: 10.1021/acs.bioconjchem.6b00746.
  • Gragoudas ES, Adamis AP, Cunningham ET, Jr, et al. Pegaptanib for neovascular age-related macular degeneration. N Engl J Med. 2004;351(27):2805–2816. doi: 10.1056/NEJMoa042760.
  • Song Y, Zhu Z, An Y, et al. Selection of DNA aptamers against epithelial cell adhesion molecule for cancer cell imaging and circulating tumor cell capture. J Anal Chem. 2013;85(8):4141–4149. doi: 10.1021/ac400366b.
  • Xiang D, Shigdar S, Qiao G, et al. Nucleic acid aptamer-guided cancer therapeutics and diagnostics: the next generation of cancer medicine. J Theranostics. 2015;5(1):23–42. doi: 10.7150/thno.10202.
  • Prodeus A, Abdul-Wahid A, Fischer NW, et al. Targeting the PD-1/PD-L1 immune evasion axis with DNA aptamers as a novel therapeutic strategy for the treatment of disseminated cancers. J Mol Ther Nucleic Acids. 2015;4:e237.
  • Chen C-hB, Dellamaggiore KR, Ouellette CP, et al. Aptamer-based endocytosis of a lysosomal enzyme. Proc Natl Acad Sci U S A. 2008;105(41):15908–15913. doi: 10.1073/pnas.0808360105.
  • Soldevilla MM, Hervas S, Villanueva H, et al. Identification of LAG3 high affinity aptamers by HT-SELEX and conserved motif accumulation (CMA). PLOS One. 2017;12(9):e0185169. doi: 10.1371/journal.pone.0185169.
  • Lozano T, Soldevilla MM, Casares N, et al. Targeting inhibition of Foxp3 by a CD28 2′-fluro oligonucleotide aptamer conjugated to P60-peptide enhances active cancer immunotherapy. J Biomaterials. 2016;91:73–80. doi: 10.1016/j.biomaterials.2016.03.007.
  • Wei Z, Zhou Y, Wang R, et al. Aptamers as smart ligands for targeted drug delivery in cancer therapy. J Pharmaceutics. 2022;14(12):2561. doi: 10.3390/pharmaceutics14122561.
  • Liao Y-C, Cheng T-C, Tu S-H, et al. Tumor targeting and therapeutic assessments of RNA nanoparticles carrying α9-nAChR aptamer and anti-miR-21 in triple-negative breast cancers. Mol Ther Nucleic Acids. 2023;33:351–366. doi: 10.1016/j.omtn.2023.07.013.
  • Bavi R, Hang Z, Banerjee P, et al. Doxorubicin-Conjugated innovative 16-mer DNA aptamer-based annexin A1 targeted anti-cancer drug delivery. Mol Ther Nucleic Acids. 2020;21:1074–1086. doi: 10.1016/j.omtn.2020.07.038.
  • Zhu Z, Yang Z, Zhu C, et al. Development of a DNA aptamer targeting IDO1 with anti-tumor effects. iScience. 2023;26(8):107367. doi: 10.1016/j.isci.2023.107367.
  • Wan Q, Zeng Z, Qi J, et al. Aptamer-armed nanostructures improve the chemotherapy outcome of triple-negative breast cancer. Mol Ther. 2022;30(6):2242–2256. doi: 10.1016/j.ymthe.2022.02.004.
  • Li X, Wu X, Yang H, et al. A nuclear targeted dox-aptamer loaded liposome delivery platform for the circumvention of drug resistance in breast cancer. Biomed Pharmacother. 2019;117:109072. doi: 10.1016/j.biopha.2019.109072.
  • Pinto-Díez C, Ferreras-Martín R, Carrión-Marchante R, et al. An optimized MNK1b aptamer, apMNKQ2, and its potential use as a therapeutic agent in breast cancer. Mol Ther Nucleic Acids. 2022;30:553–568. doi: 10.1016/j.omtn.2022.11.009.
  • Ellington AD, Szostak JW. In vitro selection of RNA molecules that bind specific ligands. Nature. 1990;346(6287):818–822. doi: 10.1038/346818a0.
  • Kaur H. Recent developments in cell-SELEX technology for aptamer selection. Biochim Biophys Acta Gen Subj. 2018;1862(10):2323–2329. doi: 10.1016/j.bbagen.2018.07.029.
  • Darmostuk M, Rimpelova S, Gbelcova H, et al. Current approaches in SELEX: an update to aptamer selection technology. Biotechnol Adv. 2015;33(6 Pt 2):1141–1161. doi: 10.1016/j.biotechadv.2015.02.008.
  • Niazi JH, Verma SK, Niazi S, et al. In vitro HER2 protein-induced affinity dissociation of carbon nanotube-wrapped anti-HER2 aptamers for HER2 protein detection. Analyst. 2015;140(1):243–249. doi: 10.1039/c4an01665c.
  • Li J, Zhong X, Cheng F, et al. One-pot synthesis of aptamer-functionalized silver nanoclusters for cell-type-specific imaging. Anal Chem. 2012;84(9):4140–4146. doi: 10.1021/ac3003402.
  • Hua X, Zhou Z, Yuan L, et al. Selective collection and detection of MCF-7 breast cancer cells using aptamer-functionalized magnetic beads and quantum dots based nano-bio-probes. J Anal Chim Acta. 2013;788:135–140. doi: 10.1016/j.aca.2013.06.001.
  • Ahirwar R, Vellarikkal SK, Sett A, et al. Aptamer-assisted detection of the altered expression of estrogen receptor alpha in human breast cancer. PLOS One. 2016;11(4):e0153001. doi: 10.1371/journal.pone.0153001.
  • Kang HS, Huh YM, Kim S, et al. Isolation of RNA aptamers targeting HER-2-overexpressing breast cancer cells using cell-SELEX. Bull Korean Chem Soc. 2009;30(8):1827–1831.
  • Li X, Zhang W, Liu L, et al. In vitro selection of DNA aptamers for metastatic breast cancer cell recognition and tissue imaging. Anal Chem. 2014;86(13):6596–6603. doi: 10.1021/ac501205q.
  • Zhang K, Sefah K, Tang L, et al. A novel aptamer developed for breast cancer cell internalization. ChemMedChem. 2012;7(1):79–84. doi: 10.1002/cmdc.201100457.
  • Liu Z, Duan J-H, Song Y-M, et al. Novel HER2 aptamer selectively delivers cytotoxic drug to HER2-positive breast cancer cells in vitro. J Transl Med. 2012;10:148. doi: 10.1186/1479-5876-10-148.
  • Stoltenburg R, Reinemann C, Strehlitz B. SELEX–a (r)evolutionary method to generate high-affinity nucleic acid ligands. Biomol Eng. 2007;24(4):381–403. doi: 10.1016/j.bioeng.2007.06.001.
  • Ohuchi S. Cell-SELEX technology. Biores Open Access. 2012;1(6):265–272. doi: 10.1089/biores.2012.0253.
  • Mo Y, Wan R, Zhang Q. Application of reverse transcription-PCR and real-time PCR in nanotoxicity research. Methods Mol Biol. 2012;926:99–112.
  • Kohlberger M, Gadermaier G. SELEX: critical factors and optimization strategies for successful aptamer selection. Biotechnol Appl Biochem. 2022;69(5):1771–1792. doi: 10.1002/bab.2244.
  • Davies DR, Gelinas AD, Zhang C, et al. Unique motifs and hydrophobic interactions shape the binding of modified DNA ligands to protein targets. Proc Natl Acad Sci U S A. 2012;109(49):19971–19976. doi: 10.1073/pnas.1213933109.
  • Zhang H-L, Lv C, Li Z-H, et al. Analysis of aptamer-target binding and molecular mechanisms by thermofluorimetric analysis and molecular dynamics simulation. Front Chem. 2023;11:1144347. doi: 10.3389/fchem.2023.1144347.
  • Wang B. A new design for the fixed primer regions in an oligonucleotide library for SELEX aptamer screening. Front Chem. 2020;8:475. doi: 10.3389/fchem.2020.00475.
  • Takahashi M, Wu X, Ho M, et al. High throughput sequencing analysis of RNA libraries reveals the influences of initial library and PCR methods on SELEX efficiency. Sci Rep. 2016;6(1):33697. doi: 10.1038/srep33697.
  • Komarova N, Kuznetsov A. Inside the black box: what makes SELEX better? Molecules. 2019;24(19):24. doi: 10.3390/molecules24193598.
  • Hoinka J, Przytycka TM. The bioinformatics of aptamers: HT-SELEX analysis with AptaSUITE. Methods Mol Biol. 2023;2570:73–83. doi: 10.1007/978-1-0716-2695-5_6.
  • Pantier R, Chhatbar K, Alston G, et al. High-throughput sequencing SELEX for the determination of DNA-binding protein specificities in vitro. STAR Protoc. 2022;3(3):101490. doi: 10.1016/j.xpro.2022.101490.
  • Bhardwaj T, Rathore AS, Jha SK. The selection of highly specific and selective aptamers using modified SELEX and their use in process analytical techniques for lucentis bioproduction. J RSC Adv. 2020;10(48):28906–28917. doi: 10.1039/d0ra03542d.
  • Kim D-H, Seo J-M, Shin K-J, et al. Design and clinical developments of aptamer-drug conjugates for targeted cancer therapy. Biomater Res. 2021;25(1):42. doi: 10.1186/s40824-021-00244-4.
  • Pleiko K, Haugas M, Parfejevs V, et al. Targeting triple-negative breast cancer cells with a β1-integrin binding aptamer. Mol Ther Nucleic Acids. 2023;33:871–884. doi: 10.1016/j.omtn.2023.08.015.
  • Qiu J, Tomeh MA, Jin Y, et al. Microfluidic formulation of anticancer peptide loaded ZIF-8 nanoparticles for the treatment of breast cancer. J Colloid Interface Sci. 2023;642:810–819. doi: 10.1016/j.jcis.2023.03.172.
  • Tan Y, Li Y, Qu Y-X, et al. Aptamer-Peptide conjugates as targeted chemosensitizers for breast cancer treatment. ACS Appl Mater Interfaces. 2021;13(8):9436–9444. doi: 10.1021/acsami.0c18282.
  • Yoon S, Rossi JJ. Aptamers: uptake mechanisms and intracellular applications. Adv Drug Deliv Rev. 2018;134:22–35. doi: 10.1016/j.addr.2018.07.003.
  • Liu W, Wang Y, Zhang Y, et al. Analysis of breast cancer biomarker HER2 based on single stranded DNA aptamer and enzyme signal amplification. Int J Electrochem Sci. 2023;18(4):100056. doi: 10.1016/j.ijoes.2023.100056.
  • Zannetti A, Camorani S, Hill B, et al. PO-038 PDGFRβ as a new biomarker for metastatic triple-negative breast cancer: development of a theranostic anti-PDGFRβ aptamer for imaging and suppression of metastases. ESMO Open. 2018;3: a242. doi: 10.1136/esmoopen-2018-EACR25.571.
  • Liu M, Yu X, Chen Z, et al. Aptamer selection and applications for breast cancer diagnostics and therapy. J Nanobiotechnology. 2017;15(1):81. doi: 10.1186/s12951-017-0311-4.
  • Cai S, Li G, Zhang X, et al. A signal-on fluorescent aptasensor based on single-stranded DNA-sensitized luminescence of terbium (III) for label-free detection of breast cancer cells. Talanta. 2015;138:225–230. doi: 10.1016/j.talanta.2015.02.056.
  • Ahirwar R, Khan N, Kumar S. Aptamer-based sensing of breast cancer biomarkers: a comprehensive review of analytical figures of merit. Expert Rev Mol Diagn. 2021;21(7):703–721. doi: 10.1080/14737159.2021.1920397.
  • Hou Y, Peng Y, Li Z. Update on prognostic and predictive biomarkers of breast cancer. Semin Diagn Pathol. 2022;39(5):322–332. doi: 10.1053/j.semdp.2022.06.015.
  • Gijs M, Penner G, Blackler G, et al. Improved aptamers for the diagnosis and potential treatment of HER2-Positive cancer. Pharmaceuticals. 2016;9(2):29. doi: 10.3390/ph9020029.
  • Zaha DC. Significance of immunohistochemistry in breast cancer. World J Clin Oncol. 2014;5(3):382–392. doi: 10.5306/wjco.v5.i3.382.
  • Duffy MJ, McGowan PM, Harbeck N, et al. uPA and PAI-1 as biomarkers in breast cancer: validated for clinical use in level-of-evidence-1 studies. Breast Cancer Res. 2014;16(4):428. doi: 10.1186/s13058-014-0428-4.
  • Harris L, Fritsche H, Mennel R, et al. American society of clinical oncology 2007 update of recommendations for the use of tumor markers in breast cancer. J Clin Oncol. 2007;25(33):5287–5312. doi: 10.1200/JCO.2007.14.2364.
  • Siow ZR, De Boer RH, Lindeman GJ, et al. Spotlight on the utility of the oncotype DX® breast cancer assay. Int J Womens Health. 2018;10:89–100. doi: 10.2147/IJWH.S124520.
  • Slodkowska EA, Ross JS. MammaPrint™ 70-gene signature: another milestone in personalized medical care for breast cancer patients. Expert Rev Mol Diagn. 2009;9(5):417–422. doi: 10.1586/erm.09.32.
  • Zhang X. Molecular classification of breast cancer: relevance and challenges. Arch Pathol Lab Med. 2023;147(1):46–51. doi: 10.5858/arpa.2022-0070-RA.
  • Graham LJ, Shupe MP, Schneble EJ, et al. Current approaches and challenges in monitoring treatment responses in breast cancer. J Cancer. 2014;5(1):58–68. doi: 10.7150/jca.7047.
  • Berke TP, Slight SH, Hyder SM. Role of reactivating mutant p53 protein in suppressing growth and metastasis of triple-negative breast cancer. Onco Targets Ther. 2022;15:23–30. doi: 10.2147/OTT.S342292.
  • Nowogrodzka K, Jankowska-Konsur A. Emerging biomarker in carcinogenesis. Focus on nestin. Postepy Dermatol Alergol. 2022;39(6):1001–1007. doi: 10.5114/ada.2022.122599.
  • Zhu G, Niu G, Chen X. Aptamer-drug conjugates. Bioconjug Chem. 2015;26(11):2186–2197. doi: 10.1021/acs.bioconjchem.5b00291.
  • Fan R, Tao X, Zhai X, et al. Application of aptamer-drug delivery system in the therapy of breast cancer. Biomed Pharmacother. 2023;161:114444. doi: 10.1016/j.biopha.2023.114444.
  • Hashemitabar S, Yazdian-Robati R, Hashemi M, et al. ABCG2 aptamer selectively delivers doxorubicin to drug-resistant breast cancer cells. J Biosci. 2019;44(2):1–7. doi: 10.1007/s12038-019-9854-x.
  • He J, Duan Q, Ran C, et al. Recent progress of aptamer–drug conjugates in cancer therapy. Acta Pharm Sin B. 2023;13(4):1358–1370. doi: 10.1016/j.apsb.2023.01.017.
  • Woythe L, Porciani D, Harzing T, et al. Valency and affinity control of aptamer-conjugated nanoparticles for selective cancer cell targeting. J Control Release. 2023;355:228–237. doi: 10.1016/j.jconrel.2023.01.008.
  • Jeong HY, Kim H, Lee M, et al. Development of HER2-Specific aptamer-drug conjugate for breast cancer therapy. Int J Mol Sci. 2020;21(24):9764. doi: 10.3390/ijms21249764.
  • Chen W, Hazoor S, Madigan R, et al. Alkaline-responsive polydiacetylene-peptide hydrogel for pH-sensing and on-demand antimicrobial release. Materials Today Advances. 2022;16:100288. doi: 10.1016/j.mtadv.2022.100288.
  • Liu M, Ma W, Li Q, et al. Aptamer-targeted DNA nanostructures with doxorubicin to treat protein tyrosine kinase 7-positive tumours. Cell Prolif. 2019;52(1):e12511. doi: 10.1111/cpr.12511.
  • Zeng Z, Qi J, Wan Q, et al. Aptamers with self-loading drug payload and pH-controlled drug release for targeted chemotherapy. J Pharmaceutics. 2021;13(8):1221. doi: 10.3390/pharmaceutics13081221.
  • Alijani H, Noori A, Faridi N, et al. Aptamer-functionalized Fe3O4@ MOF nanocarrier for targeted drug delivery and fluorescence imaging of the triple-negative MDA-MB-231 breast cancer cells. J Solid State Chem. 2020;292:121680. doi: 10.1016/j.jssc.2020.121680.
  • Lin H-C, Li W-T, Madanayake TW, et al. Aptamer-guided up conversion nanoplatform for targeted drug delivery and near-infrared light-triggered photodynamic therapy. J Biomater Appl. 2020;34(6):875–888. doi: 10.1177/0885328219882152.
  • Zhang H-J, Zhao X, Chen L-J, et al. Dendrimer grafted persistent luminescent nanoplatform for aptamer guided tumor imaging and acid-responsive drug delivery. J Talanta. 2020;219:121209. doi: 10.1016/j.talanta.2020.121209.
  • Zavareh HS, Pourmadadi M, Moradi A, et al. Chitosan/carbon quantum dot/aptamer complex as a potential anticancer drug delivery system towards the release of 5-fluorouracil. Int J Biol Macromol. 2020;165(Pt A):1422–1430. doi: 10.1016/j.ijbiomac.2020.09.166.
  • Lee H, Dam DHM, Ha JW, et al. Enhanced human epidermal growth factor receptor 2 degradation in breast cancer cells by lysosome-targeting gold nanoconstructs. ACS Nano. 2015;9(10):9859–9867. doi: 10.1021/acsnano.5b05138.
  • Shen Y, Zhang J, Hao W, et al. Copolymer micelles function as pH-responsive nanocarriers to enhance the cytotoxicity of a HER2 aptamer in HER2-positive breast cancer cells. Int J Nanomedicine. 2018;13:537–553. doi: 10.2147/IJN.S149942.
  • Sundaram P, Kurniawan H, Byrne ME, et al. Therapeutic RNA aptamers in clinical trials. Eur J Pharm Sci. 2013;48(1-2):259–271. doi: 10.1016/j.ejps.2012.10.014.
  • Kohn DB, Bauer G, Rice CR, et al. A clinical trial of retroviral-mediated transfer of a rev-responsive element decoy gene into CD34+ cells from the bone marrow of human immunodeficiency virus-1–infected children. Blood. 1999;94(1):368–371.
  • Suzuki JI, Tezuka D, Morishita R, et al. An initial case of suppressed restenosis with nuclear factor-kappa B decoy transfection after percutaneous coronary intervention. J Gene Med. 2009;11(1):89–91. doi: 10.1002/jgm.1266.
  • Lincoff AM, Mehran R, Povsic TJ, et al. Effect of the REG1 anticoagulation system versus bivalirudin on outcomes after percutaneous coronary intervention (REGULATE-PCI): a randomised clinical trial. J Lancet. 2016;387(10016):349–356. doi: 10.1016/S0140-6736(15)00515-2.
  • Jilma-Stohlawetz P, Knöbl P, Gilbert JC, et al. The anti-von willebrand factor aptamer ARC1779 increases von willebrand factor levels and platelet counts in patients with type 2B von willebrand disease. Thromb Haemost. 2012;108(2):284–290. doi: 10.1160/TH11-12-0889.
  • Vater A, Klussmann S. Turning mirror-image oligonucleotides into drugs: the evolution of spiegelmer(®) therapeutics. Drug Discov Today. 2015;20(1):147–155. doi: 10.1016/j.drudis.2014.09.004.
  • Group ES. Preclinical and phase 1A clinical evaluation of an anti-VEGF pegylated aptamer (EYE001) for the treatment of exudative age-related macular degeneration. J Retina. 2002;22(2):143–152.
  • Group ES. Anti-vascular endothelial growth factor therapy for subfoveal choroidal neovascularization secondary to age-related macular degeneration: phase II study results. Ophthalmology. 2003;110(5):979–986.
  • Bates PJ, Laber DA, Miller DM, et al. Discovery and development of the G-rich oligonucleotide AS1411 as a novel treatment for cancer. Exp Mol Pathol. 2009;86(3):151–164. doi: 10.1016/j.yexmp.2009.01.004.
  • Drolet DW, Green LS, Gold L, et al. Fit for the eye: aptamers in ocular disorders. Nucleic Acid Ther. 2016;26(3):127–146. doi: 10.1089/nat.2015.0573.
  • Menne J, Eulberg D, Beyer D, et al. CC motif-ligand 2 inhibition with emapticap pegol (NOX-E36) in type 2 diabetic patients with albuminuria. J Nephrol Dial Transplant. 2017;32(2):307–315.
  • Yang Y, Zhu W, Cheng L, et al. Tumor microenvironment (TME)-activatable circular aptamer-PEG as an effective hierarchical-targeting molecular medicine for photodynamic therapy. Biomaterials. 2020;246:119971. doi: 10.1016/j.biomaterials.2020.119971.
  • Barzegar Behrooz A, Nabavizadeh F, Adiban J, et al. Smart bomb AS1411 aptamer-functionalized/PAMAM dendrimer nanocarriers for targeted drug delivery in the treatment of gastric cancer. Clin Exp Pharmacol Physiol. 2017;44(1):41–51. doi: 10.1111/1440-1681.12670.
  • Tan L, Neoh KG, Kang ET, et al. PEGylated anti-MUC1 aptamer-doxorubicin complex for targeted drug delivery to MCF7 breast cancer cells. Macromol Biosci. 2011;11(10):1331–1335. doi: 10.1002/mabi.201100173.
  • Nerantzaki M, Loth C, Lutz J-F. Chemical conjugation of nucleic acid aptamers and synthetic polymers. J. Polym Chem. 2021;12(24):3498–3509. doi: 10.1039/D1PY00516B.
  • Liu P, Ga L, Aodeng G, et al. Aptamer-drug conjugates: new probes for imaging and targeted therapy. J Biosens Bioelectron. 2022;10:100126.
  • Kovacevic KD, Gilbert JC, Jilma B. Pharmacokinetics, pharmacodynamics and safety of aptamers. Adv Drug Deliv Rev. 2018;134:36–50. doi: 10.1016/j.addr.2018.10.008.
  • Hicke BJ, Stephens AW, Gould T, et al. Tumor targeting by an aptamer. Journal of nuclear medicine: official publication. Soc Nuclear Med. 2006;47(4):668–678.
  • Cadinoiu AN, Rata DM, Atanase LI, et al. Formulations based on drug loaded aptamer-conjugated liposomes as a viable strategy for the topical treatment of basal cell carcinoma—in vitro tests. Pharmaceutics. 2021;13(6):866. doi: 10.3390/pharmaceutics13060866.
  • Gilboa E, McNamara J, Pastor F. Use of oligonucleotide aptamer ligands to modulate the function of immune receptors. Clin Cancer Res. 2013;19(5):1054–1062. doi: 10.1158/1078-0432.CCR-12-2067.
  • Wengerter BC, Katakowski JA, Rosenberg JM, et al. Aptamer-targeted antigen delivery. Mol Ther. 2014;22(7):1375–1387. doi: 10.1038/mt.2014.51.
  • Luo Y-L, Shiao Y-S, Huang Y-F. Release of photoactivatable drugs from plasmonic nanoparticles for targeted cancer therapy. ACS Nano. 2011;5(10):7796–7804. doi: 10.1021/nn201592s.
  • Powell D, Chandra S, Dodson K, et al. Aptamer-functionalized hybrid nanoparticle for the treatment of breast cancer. Eur J Pharm Biopharm. 2017;114:108–118. doi: 10.1016/j.ejpb.2017.01.011.
  • Tao W, Zeng X, Wu J, et al. Polydopamine-based surface modification of novel nanoparticle-aptamer bioconjugates for in vivo breast cancer targeting and enhanced therapeutic effects. J Theranostics. 2016;6(4):470–484. doi: 10.7150/thno.14184.
  • Ma W, Yang Y, Zhu J, et al. Biomimetic nanoerythrosome-coated aptamer–DNA tetrahedron/maytansine conjugates: pH-responsive and targeted cytotoxicity for HER2-positive breast cancer. J Adv Mater. 2022;34(46):2109609. doi: 10.1002/adma.202109609.
  • Saleh T, Soudi T, Shojaosadati SA. Aptamer functionalized curcumin-loaded human serum albumin (HSA) nanoparticles for targeted delivery to HER-2 positive breast cancer cells. Int J Biol Macromol. 2019;130:109–116. doi: 10.1016/j.ijbiomac.2019.02.129.
  • Eulberg D, Klussmann S. Spiegelmers: biostable aptamers. Chembiochem. 2003;4(10):979–983. doi: 10.1002/cbic.200300663.
  • Dass CR, Saravolac EG, Li Y, et al. Cellular uptake, distribution, and stability of 10-23 deoxyribozymes. Antisense Nucleic Acid Drug Dev. 2002;12(5):289–299. doi: 10.1089/108729002761381276.
  • Lakhin A, Tarantul V, Gening L. Aptamers: problems, solutions and prospects. J Acta Naturae. 2013;5(4):34–43. doi: 10.32607/20758251-2013-5-4-34-43.
  • Shen W, De Hoyos CL, Sun H, et al. Acute hepatotoxicity of 2′ fluoro-modified 5–10–5 gapmer phosphorothioate oligonucleotides in mice correlates with intracellular protein binding and the loss of DBHS proteins. Nucleic Acids Res. 2018;46(5):2204–2217. doi: 10.1093/nar/gky060.
  • Kratschmer C, Levy M. Effect of chemical modifications on aptamer stability in serum. Nucleic Acid Ther. 2017;27(6):335–344. doi: 10.1089/nat.2017.0680.
  • Shigdar S, Macdonald J, O’Connor M, et al. Aptamers as theranostic agents: modifications, serum stability and functionalisation. Sensors. 2013;13(10):13624–13637. doi: 10.3390/s131013624.
  • Zhou J, Rossi J. Aptamers as targeted therapeutics: current potential and challenges. Nat Rev Drug Discov. 2017;16(3):181–202. doi: 10.1038/nrd.2016.199.
  • Chandola C, Neerathilingam M. Aptamers for targeted delivery: current challenges and future opportunities. In: Tyagi RK, Garg N, Shukla R, Bisen PS, editors. Role of novel drug delivery vehicles in nanobiomedicine. London: IntechOpen; 2019. p. 1–22. doi: 10.5772/intechopen.84217.
  • Ni S, Zhuo Z, Pan Y, et al. Recent progress in aptamer discoveries and modifications for therapeutic applications. ACS Appl Mater Interfaces. 2021;13(8):9500–9519. doi: 10.1021/acsami.0c05750.
  • Zhang GQ, Zhong LP, Yang N, et al. Screening of aptamers and their potential application in targeted diagnosis and therapy of liver cancer. World J Gastroenterol. 2019;25(26):3359–3369. doi: 10.3748/wjg.v25.i26.3359.
  • Gao S, Zheng X, Jiao B, et al. Post-SELEX optimization of aptamers. Anal Bioanal Chem. 2016;408(17):4567–4573. doi: 10.1007/s00216-016-9556-2.
  • Canoura J, Yu H, Alkhamis O, et al. Accelerating Post-SELEX aptamer engineering using exonuclease digestion. J Am Chem Soc. 2021;143(2):805–816. doi: 10.1021/jacs.0c09559.
  • Qi S, Duan N, Khan IM, et al. Strategies to manipulate the performance of aptamers in SELEX, post-SELEX and microenvironment. Biotechnol Adv. 2022;55:107902. doi: 10.1016/j.biotechadv.2021.107902.
  • Elskens JP, Elskens JM, Madder A. Chemical modification of aptamers for increased binding affinity in diagnostic applications: current status and future prospects. Int J Mol Sci. 2020;21(12):4522. doi: 10.3390/ijms21124522.
  • Sheikh A, Md S, Kesharwani P. Aptamer grafted nanoparticle as targeted therapeutic tool for the treatment of breast cancer. J Biomed Pharmacother. 2022;146:112530. doi: 10.1016/j.biopha.2021.112530.
  • Morita Y, Leslie M, Kameyama H, et al. Aptamer therapeutics in cancer: current and future. Cancers. 2018;10(3):80. doi: 10.3390/cancers10030080.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.