157
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

An analysis of classical techniques for consistent stabilisation of the advection–diffusion–reaction equation finite element solution

ORCID Icon
Pages 315-332 | Received 19 Jul 2019, Accepted 12 Apr 2020, Published online: 06 May 2020

References

  • Babuska, I., and A. K. Aziz. 1976. “On the Angle Condition in the Finite Element Method.” Journal on Numerical Analysis 13: 214–226. doi: 10.1137/0713021
  • Brooks, A. N., and T. J. R. Hughes. 1982. “Streamline Upwind/Petrov-Galerkin Formulation for Convective Dominated Flows with Particular Emphasis on the Incompressible Navier-Stokes Equations.” Computer Methods in Applied Mechanics and Engineering 32: 199–259. doi: 10.1016/0045-7825(82)90071-8
  • Chacón, T., and R. Lewandowski. 2014. Mathematical and Numerical Foundations of Turbulence Models and Applications. New York: Birkhäuser.
  • Codina, R. 2000. “Stabilization of Incompressibility and Convection through Orthogonal Sub-Scales in Finite Element Methods.” Computer Methods in Applied Mechanics and Engineering 190: 1579–1599. doi: 10.1016/S0045-7825(00)00254-1
  • Codina, R. 2002. “Stabilized Finite Element Approximation of Transient Incompressible Flows using Orthogonal Subscales.” Computer Methods in Applied Mechanics and Engineering 191: 4295–4321. doi: 10.1016/S0045-7825(02)00337-7
  • Codina, R., and J. Blasco. 2001. “Analysis of a Stabilized Finite Element Approximation of the Transient Convection-Diffusion-Reaction Equation Using Orthogonal Subscales.” Computing and Visualization in Science 3: 167–174.
  • Codina, R., J. Principe, O. Guasch, and S. Badia. 2007. “Time Dependent Subscales in the Stabilized Finite Element Approximation of Incompressible Flow Problems.” Computer Methods in Applied Mechanics and Engineering 196: 2413–2430. doi: 10.1016/j.cma.2007.01.002
  • Dehghan, M. 2004a. “Weighted Finite Difference Techniques for the One-Dimensional Advection–Diffusion Equation.” Applied Mathematics and Computation 147: 307–319. doi: 10.1016/S0096-3003(02)00667-7
  • Dehghan, M. 2004b. “Numerical Solution of the Three-Dimensional Advection–Diffusion Equation.” Applied Mathematics and Computation 150: 5–19. doi: 10.1016/S0096-3003(03)00193-0
  • Dehghan, M. 2005. “Quasi-Implicit and Two-Level Explicit Finite-Difference Procedures for Solving the One-Dimensional Advection Equation.” Applied Mathematics and Computation 167: 46–67. doi: 10.1016/j.amc.2004.06.067
  • Dehghan, M. 2007. “Time-Splitting Procedures for the Solution of the Two-Dimensional Transport Equation.” Kybernetes 36: 791–805. doi: 10.1108/03684920710749857
  • Dehghan, M., and N. Narimani. 2018. “Approximation of Continuous Surface Differential Operators with the Generalized Moving Least-Squares (GMLS) Method for Solving Reaction–Diffusion Equation.” Computational & Applied Mathematics 37: 6955–6971. doi: 10.1007/s40314-018-0716-1
  • Donea, J. 1984. “A Taylor-Galerkin Method for Convection Transport Problems.” International Journal for Numerical Methods in Engineering 20: 101–119. doi: 10.1002/nme.1620200108
  • Donea, J., and A. Huerta. 2003. Finite Element Methods for Flow Problems. Chichester: Wiley.
  • ElSheikh, A., S. Chidiac, and W. Smith. 2008. “A Posteriori Error Estimation based on Numerical Realization of the Variational Multiscale Method.” Computer Methods in Applied Mechanics and Engineering 197: 3637–3656. doi: 10.1016/j.cma.2008.02.015
  • Evans, L. C. 1997. Partial Differential Equations. Providence: American Mathematical Society.
  • Hauke, G., M. H. Doweidar, and M. Miana. 2006. “The Multiscale Approach to Error Estimation and Adaptivity.” Computer Methods in Applied Mechanics and Engineering 195: 1573–1593. doi: 10.1016/j.cma.2005.05.029
  • Hauke, G., D. Fuster, and M. Doweidar. 2008. “Variational Multiscale A-Posteriori Error Estimation for Multi-Dimensional Transport Problems.” Computer Methods in Applied Mechanics and Engineering 197: 2701–2718. doi: 10.1016/j.cma.2007.12.022
  • Houzeaux, G., B. Eguzkitza, and M. Vázquez. 2008. “A Variational Multiscale Model for the Advection–Diffusion–Reaction Equation.” Communications in Numerical Methods in Engineering 25: 787–809. doi: 10.1002/cnm.1156
  • Hughes, T. J. R. 1995. “Multiscale Phenomena: Green'S Functions, the Dirichlet-to-Neumann Formulation, Subgrid Scale Models, Bubbles and the Origins of Stabilized Methods.” Computer Methods in Applied Mechanics and Engineering 127: 387–401. doi: 10.1016/0045-7825(95)00844-9
  • Hughes, T. J. R., and A. N. Brooks. 1979. “A Multidimensional Upwind Scheme with no Crosswind Diffusion”. In Finite Element Methods for Convection Dominated Flows, edited by T. J. R. Hughes, 19–35. New York: ASME.
  • Hughes, T. J. R., and A. N. Brooks. 1982. “A Theoretical Framework for Petrov-Galerkin Methods with Discontinuous Weighting Functions: Application to the Streamline-Upwind Procedure”. In Finite Element in Fluids, edited by R. H. Gallagher, D. H. Norrie, J. T. Oden, and O. C. Zienkiewicz, 47–65. London: Wiley.
  • Hughes, T. J. R., G. R. Feijóo, L. Mazzei, and J. Quincy. 1998. “The Variational Multiscale Method: A Paradigm for Computational Mechanics.” Computer Methods in Applied Mechanics and Engineering 166: 3–24. doi: 10.1016/S0045-7825(98)00079-6
  • Hughes, T. J. R., L. P. Franca, and M. Balestra. 1986. “A New Finite Element Formulation for Computational Fluid Dynamics: V. Circumventing the Babuska-Brezzi Condition: A Stable Petrov-Galerkin Formulation of the Stokes Problem Accommodating Equal-Order Interpolation.” Computer Methods in Applied Mechanics and Engineering 59: 85–99. doi: 10.1016/0045-7825(86)90025-3
  • Hughes, T. J. R., L. P. Franca, and G. M. Hulbert. 1989. “A New Finite Element Formulation for Computational Fluid Dynamics: VIII. The Galerkin/Least-Squares Method for Advective-Diffusive Equations.” Computer Methods in Applied Mechanics and Engineering 73: 173–189. doi: 10.1016/0045-7825(89)90111-4
  • Hughes, T. J. R., and M. Mallet. 1986. “A New Finite Element Formulation for Computational Fluid Dynamics: III. The Generalized Streamline Operator for Multidimensional Advective-Diffusive Systems.” Computer Methods in Applied Mechanics and Engineering 58: 305–328. doi: 10.1016/0045-7825(86)90152-0
  • Jerves, A. X. 2008. Elementos de Cálculo Numérico. Quito: Ediciones Abya-Yala.
  • Kay, J. M., and R. M. Nedderman. 1974. An Introduction to Fluid Mechanics and Heat Transfer. Cambridge University Press.
  • Mital, S. 2000. “On the Performance of High Aspect Ratio Elements for Incompressible Flows.” Computer Methods in Applied Mechanics and Engineering 188: 269–287. doi: 10.1016/S0045-7825(99)00152-8
  • Principe, J. 2008. “Subgrid Scale Stabilized Finite Elements for Low Speed Flows.” PhD diss., Department of Strength of Materials and Structural Engineering, Universitat Politècnica de Catalunya.
  • Principe, J., and R. Codina. 2010. “On the Stabilization Parameter in the Subgrid Scale Approximation of Scalar Convection-Diffusion-Reaction Equations on Distorted Meshes.” Computer Methods in Applied Mechanics and Engineering 199: 1386–1402. doi: 10.1016/j.cma.2009.08.011
  • Shakib, F., T. J. R. Hughes, and Z. Johan. 1991. “A New Finite Element Formulation for Computational Fluid Dynamics: X. The Compressible Euler and Navier-Stokes Equations.” Computer Methods in Applied Mechanics and Engineering 89: 141–219. doi: 10.1016/0045-7825(91)90041-4
  • Tao, T. 2016. “Finite Time Blowup for an Averaged Three-Dimensional Navier-Stokes Equation.” Journal of the American Mathematical Society 29: 601–674. doi: 10.1090/jams/838
  • Valverde, Q. 2003. “Elementos Estabilizados de Bajo Orden en Mecánica de Sólidos.” PhD diss., Departament Resisténcia de Materials i Estructures a Lénginyeria, Universitat Politècnica de Catalunya.
  • Whiting, C. H., and K. E. Jansen. 2001. “A Stabilized Finite Element Method for the Incompressible Navier-Stokes Equations Using a Hierarchical Basis.” International Journal for Numerical Methods in Fluids 35: 93–116. doi: 10.1002/1097-0363(20010115)35:1<93::AID-FLD85>3.0.CO;2-G
  • Zheng, W., and H. Qi. 2005. “On Friedrichs-Poincaré-Type Inequalities.” Journal of Mathematical Analysis and Applications 304: 542–551. doi: 10.1016/j.jmaa.2004.09.066
  • Zienkiewicz, O. C., and R. L. Taylor. 2000. The Finite Element Method Volume 1: The Basis. Oxford: Butterworth-Heinemann.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.