263
Views
3
CrossRef citations to date
0
Altmetric
Articles

A Lagrangian Approach Towards Quantitative Analysis of Flow-mediated Infection Transmission in Indoor Spaces with Application to SARS-COV-2

ORCID Icon, ORCID Icon & ORCID Icon
Pages 727-742 | Received 17 Apr 2021, Accepted 04 Oct 2021, Published online: 29 Oct 2021

References

  • Allshouse, M. R., and T. Peacock. 2015. “Refining Finite-Time Lyapunov Exponent Ridges and the Challenges of Classifying Them.” Chaos: An Interdisciplinary Journal of Nonlinear Science 25 (8): 087410.
  • Bayram, M., T. Partal, and G. O. Buyukoz. 2018. “Numerical Methods for Simulation of Stochastic Differential Equations.” Advances in Difference Equations 2018 (1): 1–10.
  • Bazant, M. Z., and J. W. Bush. 2021. “A Guideline to Limit Indoor Airborne Transmission of COVID-19.” Proceedings of the National Academy of Sciences 118 (17): e2018995118.
  • Beggs, C., C. Noakes, P. Sleigh, L. Fletcher, and K. Siddiqi. 2003. “The Transmission of Tuberculosis in Confined Spaces: An Analytical Review of Alternative Epidemiological Models.” The International Journal of Tuberculosis and Lung Disease 7 (11): 1015–1026.
  • Bourouiba, L. 2020. “Turbulent Gas Clouds and Respiratory Pathogen Emissions: Potential Implications for Reducing Transmission of COVID-19.” JAMA 323 (18): 1837–1838.
  • Bourouiba, L. 2021. “The Fluid Dynamics of Disease Transmission.” Annual Review of Fluid Mechanics 53: 473–508.
  • Bourouiba, L., E. Dehandschoewercker, and J. W. Bush. 2014. “Violent Expiratory Events: On Coughing and Sneezing.” Journal of Fluid Mechanics 745: 537–563.
  • Cabral, B., and L. C. Leedom. 1993. “Imaging Vector Fields Using Line Integral Convolution.” In Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques, 263–270. Anaheim, CA: Association for Computing Machinery.
  • Chaudhuri, S., S. Basu, P. Kabi, V. R. Unni, and A. Saha. 2020. “Modeling the Role of Respiratory Droplets in COVID-19 Type Pandemics.” Physics of Fluids 32 (6): 063309.
  • Cho, S. Y., J.-M. Kang, Y. E. Ha, G. E. Park, J. Y. Lee, J.-H. Ko, J. Y. Lee, and J. M. Kim, et al. 2016. “Mers-CoV Outbreak Following a Single Patient Exposure in An Emergency Room in South Korea: An Epidemiological Outbreak Study.” The Lancet 388 (10048): 994–1001.
  • Chong, K. L., C. S. Ng, N. Hori, R. Yang, R. Verzicco, and D. Lohse. 2021. “Extended Lifetime of Respiratory Droplets in a Turbulent Vapor Puff and Its Implications on Airborne Disease Transmission.” Physical Review Letters 126 (3): 034502.
  • Dbouk, T., and D. Drikakis. 2020. “On Coughing and Airborne Droplet Transmission to Humans.” Physics of Fluids 32 (5): 053310.
  • Domino, S. P. 2021. “A Case Study on Pathogen Transport, Deposition, Evaporation and Transmission: Linking High-Fidelity Computational Fluid Dynamics Simulations to Probability of Infection.” International Journal of Computational Fluid Dynamics: 1–15.
  • Feng, Y., T. Marchal, T. Sperry, and H. Yi. 2020. “Influence of Wind and Relative Humidity on the Social Distancing Effectiveness to Prevent COVID-19 Airborne Transmission: A Numerical Study.” Journal of Aerosol Science 147: 105585.
  • Ferziger, J. H., M. Perić, and R. L. Street. 2002. Computational Methods for Fluid Dynamics. Vol. 3. Berlin: Springer.
  • Gao, N., J. Niu, M. Perino, and P. Heiselberg. 2008. “The Airborne Transmission of Infection Between Flats in High-Rise Residential Buildings: Tracer Gas Simulation.” Building and Environment 43 (11): 1805–1817.
  • Garth, C., and K. I. Joy. 2010. “Fast, Memory-Efficient Cell Location in Unstructured Grids for Visualization.” IEEE Transactions on Visualization and Computer Graphics 16 (6): 1541–1550.
  • Gatherer, D. 2009. “The 2009 H1N1 Influenza Outbreak in Its Historical Context.” Journal of Clinical Virology 45 (3): 174–178.
  • Greenhalgh, T., J. L. Jimenez, K. A. Prather, Z. Tufekci, D. Fisman, and R. Schooley. 2021. “Ten Scientific Reasons in Support of Airborne Transmission of SARS-CoV-2.” The Lancet 397: 1603–1605.
  • Haller, G. 2015. “Lagrangian Coherent Structures.” Annual Review of Fluid Mechanics 47: 137–162.
  • Hang, J., Y. Li, and R. Jin. 2014. “The Influence of Human Walking on the Flow and Airborne Transmission in a Six-Bed Isolation Room: Tracer Gas Simulation.” Building and Environment 77: 119–134.
  • He, Q., J. Niu, N. Gao, T. Zhu, and J. Wu. 2011. “CFD Study of Exhaled Droplet Transmission Between Occupants Under Different Ventilation Strategies in a Typical Office Room.” Building and Environment 46 (2): 397–408.
  • JHU. 2021. “Johns Hopkins Coronavirus Resource Center.” https://coronavirus.jhu.edu/.
  • Jones, R. M., and L. M. Brosseau. 2015. “Aerosol Transmission of Infectious Disease.” Journal of Occupational and Environmental Medicine 57 (5): 501–508.
  • Klompas, M., M. A. Baker, and C. Rhee. 2020. “Airborne Transmission of SARS-CoV-2: Theoretical Considerations and Available Evidence.” JAMA 324: 441–442.
  • Li, Y., G. M. Leung, J. Tang, X. Yang, C. Chao, J. Z. Lin, and J. Lu, et al. 2007. “Role of Ventilation in Airborne Transmission of Infectious Agents in the Built Environment-a Multidisciplinary Systematic Review.” Indoor Air 17 (1): 2–18.
  • Licina, D., J. Pantelic, A. Melikov, C. Sekhar, and K. W. Tham. 2014. “Experimental Investigation of the Human Convective Boundary Layer in a Quiescent Indoor Environment.” Building and Environment 75: 79–91.
  • Liu, H., S. He, L. Shen, and J. Hong. 2021. “Simulation-Based Study of COVID-19 Outbreak Associated with Air-Conditioning in a Restaurant.” Physics of Fluids 33 (2): 023301.
  • Lu, J., J. Gu, K. Li, C. Xu, W. Su, Z. Lai, D. Zhou, C. Yu, B. Xu, and Z. Yang. 2020. “COVID-19 Outbreak Associated with Air Conditioning in Restaurant, Guangzhou, China, 2020.” Emerging Infectious Diseases 26 (7): 1628.
  • McKibbin, W. J., and R. Fernando. 2020. “The Global Macroeconomic Impacts of COVID-19: Seven Scenarios.
  • McMichael, T. M., D. W. Currie, S. Clark, S. Pogosjans, M. Kay, N. G. Schwartz, and J. Lewis, et al. 2020. “Epidemiology of COVID-19 in a Long-Term Care Facility in King County, Washington.” New England Journal of Medicine 382 (21): 2005–2011.
  • Miller, S. L., D. Mukherjee, J. Wilson, N. Clements, and C. Steiner. 2021. “Implementing a Negative Pressure Isolation Space Within a Skilled Nursing Facility to Control SARS-CoV-2 Transmission.” American Journal of Infection Control 49 (4): 438–446.
  • Miller, S. L., W. W. Nazaroff, J. L. Jimenez, A. Boerstra, G. Buonanno, S. J. Dancer, J. Kurnitski, L. C. Marr, L. Morawska, and C. Noakes. 2021. “Transmission of SARS-CoV-2 by Inhalation of Respiratory Aerosol in the Skagit Valley Chorale Superspreading Event.” Indoor Air 31 (2): 314–323.
  • Mittal, R., R. Ni, and J.-H. Seo. 2020. “The Flow Physics of COVID-19.” Journal of Fluid Mechanics 894: F2-1–F2-14.
  • Morawska, L., and J. Cao. 2020. “Airborne Transmission of SARS-CoV-2: The World Should Face the Reality.” Environment International 139: 105730.
  • Morawska, L., J. W. Tang, W. Bahnfleth, P. M. Bluyssen, A. Boerstra, G. Buonanno, and J. Cao, et al. 2020. “How Can Airborne Transmission of COVID-19 Indoors Be Minimised?” Environment International 142: 105832.
  • Noakes, C. J., and P. A. Sleigh. 2009. “Mathematical Models for Assessing the Role of Airflow on the Risk of Airborne Infection in Hospital Wards.” Journal of the Royal Society Interface 6: S791–S800.
  • Oboho, I. K., S. M. Tomczyk, A. M. Al-Asmari, A. A. Banjar, H. Al-Mugti, M. S. Aloraini, and K. Z. Alkhaldi, et al. 2015. “2014 MERS-CoV Outbreak in Jeddah–a Link to Health Care Facilities.” New England Journal of Medicine 372 (9): 846–854.
  • Ong, S. W. X., Y. K. Tan, P. Y. Chia, T. H. Lee, O. T. Ng, M. S. Y. Wong, and K. Marimuthu. 2020. “Air, Surface Environmental, and Personal Protective Equipment Contamination by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) From a Symptomatic Patient.” JAMA 323 (16): 1610–1612.
  • ONSHAPE. 2021. “Onshape Cad Platform.” https://www.onshape.com/en/.
  • OPENFOAM. 2021. “Openfoam.” https://www.openfoam.com/.
  • Pöhlker, M. L., O. O. Krüger, J.-D. Förster, W. Elbert, J. Fröhlich-Nowoisky, U. Pöschl, and C. Pöhlker, et al. 2021. “Respiratory Aerosols and Droplets in the Transmission of Infectious Diseases.” preprint arXiv:2103.01188.
  • Parienta, D., L. Morawska, G. R. Johnson, Z. Ristovski, M. Hargreaves, K. Mengersen, S. Corbett, C. Y. Chao, Y. Li, and D. Katoshevski. 2011. “Theoretical Analysis of the Motion and Evaporation of Exhaled Respiratory Droplets of Mixed Composition.” Journal of Aerosol Science 42 (1): 1–10.
  • Park, S. Y., Y.-M. Kim, S. Yi, S. Lee, B.-J. Na, C. B. Kim, and J.-i. Kim, et al. 2020. “Coronavirus Disease Outbreak in Call Center, South Korea.” Emerging Infectious Diseases 26 (8): 1666–1670.
  • Peng, J., and J. Dabiri. 2009. “Transport of Inertial Particles by Lagrangian Coherent Structures: Application to Predator-Prey Interaction in Jellyfish Feeding.” Journal of Fluid Mechanics 623: 75–84.
  • Richmond-Bryant, J. 2009. “Transport of Exhaled Particulate Matter in Airborne Infection Isolation Rooms.” Building and Environment 44 (1): 44–55.
  • Riley, E., G. Murphy, and R. Riley. 1978. “Airborne Spread of Measles in A Suburban Elementary School.” American Journal of Epidemiology 107 (5): 421–432.
  • Scharfman, B., A. Techet, J. Bush, and L. Bourouiba. 2016. “Visualization of Sneeze Ejecta: Steps of Fluid Fragmentation Leading to Respiratory Droplets.” Experiments in Fluids 57 (2): 24.
  • Shadden, S. C., F. Lekien, and J. E. Marsden. 2005. “Definition and Properties of Lagrangian Coherent Structures From Finite-Time Lyapunov Exponents in Two-Dimensional Aperiodic Flows.” Physica D: Nonlinear Phenomena 212 (3-4): 271–304.
  • Shadden, S. C., and C. A. Taylor. 2008. “Characterization of Coherent Structures in The Cardiovascular System.” Annals of Biomedical Engineering 36 (7): 1152–1162.
  • SIMSCALE. 2021. “Simscale Simulation Platform.” https://www.simscale.com/.
  • Sudharsan, M., S. L. Brunton, and J. J. Riley. 2016. “Lagrangian Coherent Structures and Inertial Particle Dynamics.” Physical Review E 93 (3): 033108.
  • Sze To, G. N., and C. Y. H. Chao. 2010. “Review and Comparison Between the Wells–Riley and Dose-Response Approaches to Risk Assessment of Infectious Respiratory Diseases.” Indoor Air 20 (1): 2–16.
  • Tellier, R., Y. Li, B. J. Cowling, and J. W. Tang. 2019. “Recognition of Aerosol Transmission of Infectious Agents: A Commentary.” BMC Infectious Diseases 19 (1): 101.
  • Van Doremalen, N., T. Bushmaker, D. H. Morris, M. G. Holbrook, A. Gamble, B. N. Williamson, and A. Tamin, et al. 2020. “Aerosol and Surface Stability of SARS-CoV-2 As Compared with SARS-CoV-1.” New England Journal of Medicine 382 (16): 1564–1567.
  • Vejerano, E. P., and L. C. Marr. 2018. “Physico-Chemical Characteristics of Evaporating Respiratory Fluid Droplets.” Journal of The Royal Society Interface 15 (139): 20170939.
  • VTK. 2021. “Vtk – The Visualization Toolkit.” https://vtk.org/.
  • Vuorinen, V., M. Aarnio, M. Alava, V. Alopaeus, N. Atanasova, M. Auvinen, and N. Balasubramanian, et al. 2020. “Modelling Aerosol Transport and Virus Exposure with Numerical Simulations in Relation to SARS-CoV-2 Transmission by Inhalation Indoors.” Safety Science 130: 104866.
  • Wei, J., and Y. Li. 2016. “Airborne Spread of Infectious Agents in the Indoor Environment.” American Journal of Infection Control 44 (9): S102–S108.
  • Wells, W. 1934. “On Air-Borne Infection: Study II. Droplets and Droplet Nuclei.” American Journal of Epidemiology 20 (3): 611–618.
  • Xie, X., Y. Li, A. Chwang, P. Ho, and W. Seto. 2007. “How Far Droplets Can Move in Indoor Environments–Revisiting the Wells Evaporation–Falling Curve.” Indoor Air 17 (3): 211–225.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.