1,492
Views
3
CrossRef citations to date
0
Altmetric
Clustering, Matching, and Prediction

Predicting the Output From a Stochastic Computer Model When a Deterministic Approximation is Available

ORCID Icon, &
Pages 786-797 | Received 28 Mar 2019, Accepted 02 Mar 2020, Published online: 07 May 2020

References

  • Andrianakis, I., and Challenor, P. G. (2012), “The Effect of the Nugget on Gaussian Process Emulators of Computer Models,” Computational Statistics & Data Analysis, 56, 4215–4228. DOI: 10.1016/j.csda.2012.04.020.
  • Ankenman, B., Nelson, B. L., and Staum, J. (2010), “Stochastic Kriging for Simulation Metamodeling,” Operations Research, 58, 371–382. DOI: 10.1287/opre.1090.0754.
  • Ba, S., and Joseph, V. R. (2012), “Composite Gaussian Process Models for Emulating Expensive Functions,” The Annals of Applied Statistics, 6, 1838–1860. DOI: 10.1214/12-AOAS570.
  • Bastos, L. S., and O’Hagan, A. (2009), “Diagnostics for Gaussian Process Emulators,” Technometrics, 51, 425–438. DOI: 10.1198/TECH.2009.08019.
  • Binois, M., Gramacy, R. B., and Ludkovski, M. (2018), “Practical Heteroscedastic Gaussian Process Modeling for Large Simulation Experiments,” Journal of Computational and Graphical Statistics, 27, 808–821. DOI: 10.1080/10618600.2018.1458625.
  • Binois, M., Huang, J., Gramacy, R. B., and Ludkovski, M. (2019), “Replication or Exploration? Sequential Design for Stochastic Simulation Experiments,” Technometrics, 61, 7–23. DOI: 10.1080/00401706.2018.1469433.
  • Boukouvalas, A., and Cornford, D. (2009), “Learning Heteroscedastic Gaussian Processes for Complex Datasets,” Technical Report.
  • Boukouvalas, A., Cornford, D., and Stehlík, M. (2014), “Optimal Design for Correlated Processes With Input-Dependent Noise,” Computational Statistics & Data Analysis, 71, 1088–1102. DOI: 10.1016/j.csda.2013.09.024.
  • Boukouvalas, A., Sykes, P., Cornford, D., and Maruri-Aguilar, H. (2014), “Bayesian Precalibration of a Large Stochastic Microsimulation Model,” IEEE Transactions on Intelligent Transportation Systems, 15, 1337–1347. DOI: 10.1109/TITS.2014.2304394.
  • Brynjarsdòttir, J., and O’Hagan, A. (2014), “Learning About Physical Parameters: The Importance of Model Discrepancy,” Inverse Problems, 30, 114007.
  • Cantoni, E., and Hastie, T. (2002), “Degrees-of-Freedom Tests for Smoothing Splines,” Biometrika, 89, 251–263. DOI: 10.1093/biomet/89.2.251.
  • Crawley, D. B., Lawrie, L. K., Winkelmann, F. C., Buhl, W. F., Huang, Y. J., Pedersen, C. O., Strand, R. K., Liesen, R. J., Fisher, D. E., Witte, M. J., and Glazer, J. (2001), “EnergyPlus: Creating a New-Generation Building Energy Simulation Program,” Energy and Buildings, 33, 319–331. DOI: 10.1016/S0378-7788(00)00114-6.
  • Deru, M., Field, K., Studer, D., Benne, K., Griffith, B., Torcellini, P., Liu, B., Halverson, M., Winiarski, D., Rosenberg, M., and Yazdanian, M. (2011), “US Department of Energy Commercial Reference Building Models of the National Building Stock.”
  • Eames, M. E., Ramallo-Gonzalez, A. P., and Wood, M. (2016), “An Update of the UK’s Test Reference Year: The Implications of a Revised Climate on Building Design,” Building Services Engineering Research and Technology, 37, 316–333. DOI: 10.1177/0143624415605626.
  • Gneiting, T., and Raftery, A. E. (2007), “Strictly Proper Scoring Rules, Prediction, and Estimation,” Journal of the American Statistical Association, 102, 359–378. DOI: 10.1198/016214506000001437.
  • Goldberg, P. W., Williams, C. K., and Bishop, C. M. (1998), “Regression With Input-Dependent Noise: A Gaussian Process Treatment,” in Advances in Neural Information Processing Systems, pp. 493–499.
  • Haaland, B., and Qian, P. Z. (2011), “Accurate Emulators for Large-Scale Computer Experiments,” The Annals of Statistics, 39, 2974–3002. DOI: 10.1214/11-AOS929.
  • Jenness, S. M., Goodreau, S. M., and Morris, M. (2018), “EpiModel: An R Package for Mathematical Modeling of Infectious Disease Over Networks,” Journal of Statistical Software, 84, 8. DOI: 10.18637/jss.v084.i08.
  • Kennedy, M. C., and O’Hagan, A. (2000), “Predicting the Output From a Complex Computer Code When Fast Approximations Are Available,” Biometrika, 87, 1–13. DOI: 10.1093/biomet/87.1.1.
  • Kennedy, M. C., and O’Hagan, A. (2001), “Bayesian Calibration of Computer Models,” Journal of the Royal Statistical Society, Series B, 63, 425–464.
  • Kersting, K., Plagemann, C., Pfaff, P., and Burgard, W. (2007), “Most Likely Heteroscedastic Gaussian Process Regression,” in Proceedings of the 24th International Conference on Machine Learning, ACM, pp. 393–400. DOI: 10.1145/1273496.1273546.
  • Loeppky, J. L., Sacks, J., and Welch, W. J. (2009), “Choosing the Sample Size of a Computer Experiment: A Practical Guide,” Technometrics, 51, 366–376. DOI: 10.1198/TECH.2009.08040.
  • McKay, M. D., Beckman, R. J., and Conover, W. J. (2000), “A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code,” Technometrics, 42, 55–61. DOI: 10.1080/00401706.2000.10485979.
  • Neal, R. M. (1997), “Monte Carlo Implementation of Gaussian Process Models for Bayesian Regression and Classification,” arXiv no. physics/9701026.
  • O’Hagan, A. (2006), “Bayesian Analysis of Computer Code Outputs: A Tutorial,” Reliability Engineering & System Safety, 91, 1290–1300. DOI: 10.1016/j.ress.2005.11.025.
  • Pratola, M., Chipman, H., George, E., and McCulloch, R. (2019), “Heteroscedastic BART via Multiplicative Regression Trees,” Journal of Computational and Graphical Statistics, 1–13. DOI: 10.1080/10618600.2019.1677243.
  • Rasmussen, C. E., and Williams, C. K. I. (2006), Gaussian Processes for Machine Learning, Cambridge, MA: MIT Press.
  • Stan Development Team (2016), “Stan Modeling Language Users Guide and Reference Manual,” Technical Report.
  • Vernon, I., Goldstein, M., and Bower, R. G. (2010), “Galaxy Formation: A Bayesian Uncertainty Analysis,” Bayesian Analysis, 5, 619–669. DOI: 10.1214/10-BA524.
  • Williamson, D. B., Blaker, A. T., and Sinha, B. (2017), “Tuning Without Over-Tuning: Parametric Uncertainty Quantification for the NEMO Ocean Model,” Geoscientific Model Development, 10, 1789–1816. DOI: 10.5194/gmd-10-1789-2017.