Publication Cover
Endothelium
Journal of Endothelial Cell Research
Volume 13, 2006 - Issue 1
6
Views
4
CrossRef citations to date
0
Altmetric
Original

Impairment of Endothelium-Dependent Aorta Relaxation by Phospholipid Components of Oxidized Low-Density Lipoprotein

, , , , , , , , & show all
Pages 1-8 | Received 07 Jul 2005, Accepted 11 Feb 2006, Published online: 13 Jul 2009

REFERENCES

  • Aviram M. Modified forms of low density lipoprotein affect platelet aggregation in vitro. Thrombosis Research Supplement 1989; 53: 561–567, [CSA]
  • Bligh E. G., Dyer W. J. A rapid method of total lipid extraction and purification. Canadian Journal of Biochemical Physiology 1959; 37: 911–917, [CSA]
  • Bossaller C., Habib G. B., Yamamoto H., Williams C., Wells S., Henry P. D. Impaired muscarinic endothelium-dependent relaxation and cyclic guanosine 5′-monophosphate formation in atherosclerotic human coronary artery and rabbit aorta. Journal of Clinical Investigation 1987b; 79: 170–174, [INFOTRIEVE], [CSA]
  • Bossaller C., Reither K., Hehlert-Friedrich C., Auch-Schwelk W., Graf K., Grafe M., Fleck E. In vivo measurement of endothelium-dependent vasodilation with substance P in man. Herz 1992; 17: 284–290, [INFOTRIEVE], [CSA]
  • Bossaller C., Yamamoto H., Lichtlen P. R., Henry P. D. Impaired cholinergic vasodilation in the cholesterol-fed rabbit in vivo. Basic Research in Cardiology 1987a; 82: 396–404, [INFOTRIEVE], [CSA], [CROSSREF]
  • Bredt D. S., Snyder S. H. Nitric oxide, a novel neuronal messenger. Neuron 1992; 8: 3–11, [INFOTRIEVE], [CSA], [CROSSREF]
  • Brown M. S., Golstein J. L. Receptors-mediated endocytosis: insights from the lipoprotein receptor system. Proceedings National Academy of Sciences of the United States of America 1979; 76: 3330–3337, [CSA]
  • Busse R., Mulsch A. Induction of nitric oxide synthase by cytokines in vascular smooth muscle cells. FEBS Letters 1990; 275: 87–90, [INFOTRIEVE], [CSA], [CROSSREF]
  • Castro-Faria-Neto H. C., Stafforini D. M., Prescott S. M., Zimmerman G. A. Regulating inflammation through the anti-inflammatory enzyme platelet-activating factor-acetylhydrolase. Memórias do Instituto Oswaldo Cruz 2005; 100: 83–91, [CSA]
  • Chen L., Liang B., Froese D. E., Liu S., Wong J. T., Tran K., Hatch G. M., Mymin D., Kroeger E. A., Man R. Y., Choy P. C. Oxidative modification of low density lipoprotein in normal and hyperlipidemic patients: Effect of lysophosphatidylcholine composition on vascular relaxation. Journal of Lipid Research 1997; 38: 546–553, [INFOTRIEVE], [CSA]
  • de Assis E. F., Silva A. R., Caiado L. F., Marathe G. K., Zimmerman G. A., Prescott S. M., McIntyre T. M., Bozza P. T., de Castro-Faria-Neto H. C. Synergism between platelet-activating factor-like phospholipids and peroxisome proliferator-activated receptor gamma agonists generated during low density lipoprotein oxidation that induces lipid body formation in leukocytes. Journal of Immunology 2003; 171: 2090–2098, [CSA]
  • Deckert V., Persegol L., Viens L., Lizard G., Athias A., Lallemant C., Gambert P., Lagrost L. Inhibitors of arterial relaxation among components of human oxidized low-density lipoproteins. Cholesterol derivatives oxidized in position 7 are potent inhibitors of endothelium-dependent relaxation. Circulation 1997; 95: 723–731, [INFOTRIEVE], [CSA]
  • Dentan C., Lesnik P., Chapman M. J., Ninio E. PAF-acether-degrading acetylhydrolase in plasma LDL is inactivated by copper- and cell-mediated oxidation. Arteriosclerosis Thrombosis and Vascular Biology 1994; 14: 353–360, [CSA]
  • Esterbauer H., Gebicki J., Puhl H., Jurgens G. The role of lipid peroxidation and antioxidants in oxidative modification of LDL. Free Radical Biology and Medicine 1992; 13: 341–390, [INFOTRIEVE], [CSA], [CROSSREF]
  • Goldstein J. L., Ho Y. K., Basu S. K., Brown M. S. Binding site on macrophage that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition. Proceedings National Academy of Sciences of the United States of America 1979; 76: 333–337, [CSA]
  • Gross S. S., Jaffe E. A., Levi R., Kilbourn R. G. Cytokine-activated endothelial cells express an isotype of nitric oxide synthase which is tetrahydrobiopterin-dependent, calmodulin-independent and inhibited by arginine analogs with a rank-order of potency characteristic of activated macrophages. Biochemical and Biophysical Research Communications 1991; 178: 823–829, [INFOTRIEVE], [CSA], [CROSSREF]
  • Heery J. M., Kozak M., Stafforini D. M., Jones D. A., Zimmerman G. A., McIntyre T. M., Prescott S. M. Oxidatively modified LDL contains phospholipids with platelet-activating factor-like activity and stimulates the growth of smooth muscle cells. Journal of Clinical Investigation 1995; 96: 2322–2330, [INFOTRIEVE], [CSA]
  • Heiber M., Docherty J. M., Shah G., Nguyen T., Cheng R., Heng H. H., Marchese A., Tsui L. C., Shi X., George S. R., et al. Isolation of three novel human genes encoding G protein-coupled receptors. DNA and Cell Biology 1995; 14: 25–35, [INFOTRIEVE], [CSA]
  • Hibbs J. B., Jr, Taintor R. R., Vavrin Z., Rachlin E. M. Nitric oxide: A cytotoxic activated macrophage effector molecule. Biochemical and Biophysical Research Communications 1988; 157: 87–94, [INFOTRIEVE], [CSA], [CROSSREF]
  • Kabarowski J. H.S., Zhu K., Le L. Q., Witte O. N., Xu Y. Lysophosphatidylcholine as a ligand for the immunoregulatory receptor G2A. Science 2001; 293: 702–705, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Kaluzny M. A., Duncan L. A., Merritt M. V., Epps D. E. Rapid separation of lipid classes in high yield and purity using bonded phase columns. Journal of Lipid Research 1985; 26: 135–140, [INFOTRIEVE], [CSA]
  • Kamido H., Eguchi H., Ikeda H., Imaizumi T., Yamana K., Hartvigsen K., Ravandi A., Kuksis A. Core aldehydes of alkyl glycerophosphocholines in atheroma induce platelet aggregation and inhibit endothelium-dependent arterial relaxation. Journal of Lipid Research 2002; 43: 158–166, [INFOTRIEVE], [CSA]
  • Kawashima S. The two faces of endothelial nitric oxide synthase in the pathophysiology of atherosclerosis. Endothelium 2004; 11: 99–107, [INFOTRIEVE], [CSA], [CROSSREF]
  • Kugiyama K., Kerns S. A., Morriset J. D., Roberts R., Henry P. D. Impairment of endothelium-dependent arterial relaxation by lysolecithin in modified low-density lipoproteins. Nature 1990; 344: 160–162, [INFOTRIEVE], [CSA], [CROSSREF]
  • Luoma J. S., Stralin P., Marklund S. L., Hiltunen T. P., Sarkioja T., Yla-Herttuala S. Expression of extracellular SOD and iNOS in macrophages and smooth muscle cells in human and rabbit atherosclerosis lesions: colocalization with epitopes characteristic of oxidized LDL and peroxinitrite-modified proteins. Arteriosclerosis Thrombosis and Vascular Biology 1998; 18: 157–167, [CSA]
  • Marathe G. K., Davies S. S., Harrison K. A., Silva A. R., Murphy R. C., Castro-Faria-Neto H., Prescott S. M., Zimmerman G. A., McIntyre T. M. Inflammatory PAF-like phospholipids in oxidized low density lipoprotein are fragmented alkyl phosphatidylcholines. Journal of Biological Chemistry 1999; 274: 28395–28404, [INFOTRIEVE], [CSA], [CROSSREF]
  • Marathe G. K., Prescott S. M., Zimmerman G. A., McIntyre T. M. Oxidized LDL contains inflammatory PAF-like phospholipids. Trends Cardiovascular Medicine 2001a; 11: 139–142, [CSA], [CROSSREF]
  • Marathe G. K., Silva A. R., Castro-Faria-Neto H. C., Tjoelker L. W., Prescott S. M., Zimmerman G. A., McIntyre T. M. Lysophosphatidylcholine and lyso-PAF display PAF-like activity derived from contaminating phospholipids. Journal of Lipid Research 2001b; 42: 1430–1437, [INFOTRIEVE], [CSA]
  • Millanvoye-Van Brussel E., Topal G., Brunet A., Do Pham T., Deckert V., Rendu F., David-Dufilho M. Lysophosphatidylcholine and 7-oxocholesterol modulate Ca2+ signals and inhibit the phosphorylation of endothelial NO synthase and cytosolic phospholipase A2. Biochemical Journal 2004; 380(Pt 2)533–539, [INFOTRIEVE], [CSA], [CROSSREF]
  • Murohara T., Kugiyama K., Ohgushi M., Sugiyama S., Ohta Y., Yasue H. LPC in oxidized LDL elicits vasocontraction and inhibits endothelium-dependent relaxation. American Journal of Physiology 1994; 267(6 Pt 2)H2441–H2449, [INFOTRIEVE], [CSA]
  • Ogita H., Liao J. K. Endothelial function and oxidative stress. Endothelium 2004; 11: 123–132, [INFOTRIEVE], [CSA], [CROSSREF]
  • Persegol L., Sementa V., Athias A., Lecerf J., Lallemant C., Gambert P. Coincubation of native and oxidized low-density lipoproteins: Potentiation of relaxation impairment. European Journal of Pharmacology 2000; 406: 429–437, [INFOTRIEVE], [CSA], [CROSSREF]
  • Plane F., Bruckdorfer K. R., Kerr P., Steuer A., Jacobs M. Oxidative modification of low-density lipoprotein and the inhibition of relaxations mediated by endothelium-derived nitric oxide in rabbit aorta. British Journal of Pharmacology 1992; 105: 216–222, [INFOTRIEVE], [CSA]
  • Radu C. G., Yang L. V., Riedinger M., Au M., Witte O. N. T cell chemotaxis to lysophosphatidylcholine through the G2A receptor. Proceedings National Academy of Sciences of the United States of America 2004; 101: 245–250, [CSA], [CROSSREF]
  • Rikitake Y., Hirata K., Kawashima S., Inoue N., Akita H., Kawai Y., Nakagawa Y., Yokoyama M. Inhibition of endothelium-dependent arterial relaxation by oxidized phosphatidylcholine. Atherosclerosis 2000; 152: 79–87, [INFOTRIEVE], [CSA], [CROSSREF]
  • Silva A. R., de Assis E. F., Caiado L. F., Marathe G. K., Bozza M. T., McIntyre T. M., Zimmerman G. A., Prescott S. M., Bozza P. T., Castro-Faria-Neto H. C. MCP-1 and 5-lipoxigenase products recruit leukocytes in response to PAF-like lipids in oxidized LDL. Journal of Immunology 2002; 168: 4112–4120, [CSA]
  • Stafforini D. M., Prescott S. M., McIntyre T. M. Human plasma platelet-activating factor acetylhydrolase purification and properties. Journal of Biological Chemistry 1987; 262: 4223–4230, [INFOTRIEVE], [CSA]
  • Steinberg D. Low density lipoprotein oxidation and its pathobiological significance. Journal of Biological Chemistry 1997; 272: 20963–20966, [INFOTRIEVE], [CSA], [CROSSREF]
  • Steinberg D., Lewis A. Conner Memorial Lecture. Oxidative modification of LDL and atherogenesis. Circulation 1997; 95: 1062–1071, [INFOTRIEVE], [CSA]
  • Steinbrecher U. P. Receptors for oxidized low density lipoprotein. Biochimica Biophysica Acta 1999; 1436: 279–298, [CSA]
  • Stremler K. E., Stafforini D. M., Prescott S. M., Zimmerman G. A., McIntyre T. M. An oxidized derivative of phosphatidylcholine is a substrate for the platelet-activating factor acetylhydrolase from human plasma. Journal of Biological Chemistry 1989; 264: 5331–5334, [INFOTRIEVE], [CSA]
  • Stuehr D. J., Griffith O W. Mammalian nitric oxide synthases. Advances in Enzymology and Related Areas of Molecular Biology 1992; 65: 287–346, [INFOTRIEVE], [CSA]
  • Verbeuren T. J., Jordaens F. H., Van Hove C. E., Van Hoydonck A. E., Herman A. G. Release and vascular activity of endothelium-derived relaxing factor in atherosclerotic rabbit aorta. European Journal of Pharmacology 1990; 191: 173–184, [INFOTRIEVE], [CSA], [CROSSREF]
  • Watson A. D., Leitinger N., Navab M., Faull K. F., Horkko S., Witztum J. L., Palinski W., Schwenke D., Salomon R. G., Sha W., Subbanagounder G., Fogelman A. M., Berliner J. A. Structural identification by mass spectrometry of oxidized phospholipids in minimally oxidized low density lipoprotein that induce monocyte/endothelial interactions and evidence for their presence in vivo. Journal of Biological Chemistry 1997; 272: 3597–13607, [CSA]
  • Weng Z., Fluckiger A. C., Nisitani S., Wahl M. I., Le L. Q., Hunter C. A., Fernal A. A., Le Beau M. M., Witte O. N. A DNA damage and stress inducible G protein-coupled receptor blocks cells in G2/M. Proceedings National Academy of Sciences of the United States of America 1998; 95: 12334–12339, [CSA], [CROSSREF]
  • Witztum J. L., Steinberg D. Role of oxidized low density lipoprotein in atherogenesis. Journal of Clinical Investigation 1991; 88: 1785–1792, [INFOTRIEVE], [CSA]
  • Yang L. V., Radu C. G., Wang L., Riedinger M., Witte O. N. Gi-independent macrophage chemotaxis to lysophosphatidylcholine via the immunoregulatory GPCR G2A. Blood 2005; 105: 1127–1134, [INFOTRIEVE], [CSA], [CROSSREF]
  • Zhu K., Baudhuin L. M., Hong G., Williams F. S., Cristina K. L., Kabarowski J. H., Witte O. N., Xu Y. Sphingosylphosphorylcholine and lysophosphatidylcholine are ligands for the G protein-coupled receptor GPR4. Journal of Biological Chemistry 2001; 276: 41325–41335, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.