Publication Cover
Endothelium
Journal of Endothelial Cell Research
Volume 13, 2006 - Issue 1
26
Views
26
CrossRef citations to date
0
Altmetric
Original

p38 Mitogen-Activated Protein Kinase Activation in Endothelial Cell Is Implicated in Cell Alignment and Elongation Induced by Fluid Shear Stress

, , , , &
Pages 43-50 | Received 26 Oct 2005, Accepted 12 Feb 2006, Published online: 13 Jul 2009

REFERENCES

  • Azuma N., Akasaka N., Kito H., Ikeda M., Gahtan V., Sasajima T., Sumpio B. E. Role of p38 MAP kinase in endothelial cell alignment induced by fluid shear stress. American Journal of Physiology Heart and Circulatory Physiology 2001; 280: H189–H197, [INFOTRIEVE], [CSA]
  • Azuma N., Duzgun S. A., Ikeda M., Kito H., Akasaka N., Sasajima T., Sumpio B. E. Endothelial cell response to different mechanical forces. Journal of Vascular Surgery 2000; 32: 789–794, [INFOTRIEVE], [CSA], [CROSSREF]
  • Bagrodia S., Derijard B., Davis R. J., Cerione R. A. Cdc42 and PAK-mediated signaling leads to Jun kinase and p38 mitogen-activated protein kinase activation. Journal of Biological Chemistry 1995; 270: 27995–27998, [INFOTRIEVE], [CSA], [CROSSREF]
  • Barbee K. A., Mundel T., Lal R., Davies P. F. Subcellular distribution of shear stress at the surface of flow-aligned and nonaligned endothelial monolayers. American Journal of Physiology 1995; 268: H1765–H1772, [INFOTRIEVE], [CSA]
  • Caro C. G., Fitz-Gerald J. M., Schroter R. C. Arterial wall shear and distribution of early atheroma in man. Nature 1969; 223: 1159–1160, [INFOTRIEVE], [CSA]
  • Caro C. G., Fitz-Gerald J. M., Schroter R. C. Atheroma and arterial wall shear. Observation, correlation and proposal of a shear dependent mass transfer mechanism for atherogenesis. Proceeding of the Royal Society of London Series B Biological Science 1971; 177: 109–159, [CSA]
  • Chien S., Li S., Shyy Y. J. Effects of mechanical forces on signal transduction and gene expression in endothelial cells. Hypertension 1998; 31: 162–169, [INFOTRIEVE], [CSA]
  • Cuenda A., Rouse J., Doza Y. N., Meier R., Cohen P., Gallagher T. F., Young P. R., Lee J. C. SB 203580 is a specific inhibitor of a MAP kinase homologue which is stimulated by cellular stresses and interleukin-1. FEBS Letters 1995; 364: 229–233, [INFOTRIEVE], [CSA], [CROSSREF]
  • Davies P. F., Remuzzi A., Gordon E. J., Dewey C. F., Jr., Gimbrone M. A., Jr. Turbulent fluid shear stress induces vascular endothelial cell turnover in vitro. Proceeding of the National Academy of Sciences of the United States of America 1986; 83: 2114–2117, [CSA]
  • Dewey C. F., Jr., Bussolari S. R., Gimbrone M. A., Jr., Davies P. F. The dynamic response of vascular endothelial cells to fluid shear stress. Journal of Biomechanical Engineering 1981; 103: 177–185, [INFOTRIEVE], [CSA]
  • Enslen H., Brancho D. M., Davis R. J. Molecular determinants that mediate selective activation of p38 MAP kinase isoforms. EMBO Journal 2000; 19: 1301–1311, [INFOTRIEVE], [CSA], [CROSSREF]
  • Fisher A. B., Chien S., Barakat A. I., Nerem R. M. Endothelial cellular response to altered shear stress. American Journal of Physiology Lung Cellular Molecular Physiology 2001; 281: L529–L533, [CSA]
  • Flaherty J. T., Pierce J. E., Ferrans V. J., Patel D. J., Tucker W. K., Fry D. L. Endothelial nuclear patterns in the canine arterial tree with particular reference to hemodynamic events. Circulation Research 1972; 30: 23–33, [INFOTRIEVE], [CSA]
  • Frangos J. A., Eskin S. G., McIntire L. V. Shear stress induced stimulation of mammalian cell metabolism. Biotechnology and Bioengineering 1998; 32: 1053–1060, [CSA], [CROSSREF]
  • Gottlieb A. I., Langille B. L., Wong M. K., Kim D. W. Structure and function of the endothelial cytoskeleton. Laboratory Investigation 1991; 65: 123–137, [INFOTRIEVE], [CSA]
  • Guay J., Lambert H., Gingras-Breton G., Lavoie J. N., Huot J., Landry J. Regulation of actin filament dynamics by p38 MAP kinase-mediated phosphorylation of heat shock protein 27. Journal of Cell Science 1997; 110(Pt 3)357–368, [INFOTRIEVE], [CSA]
  • Harrington E. O., Smeglin A., Parks N., Newton J., Rounds S. Adenosine induces endothelial apoptosis by activating protein tyrosine phosphatase: A possible role of p38alpha. American Journal of Physiology Lung Cellular Molecular Physiology 2000; 279: L733–L742, [CSA]
  • Huot J., Houle F., Rousseau S., Deschesnes R. G., Shah G. M., Landry J. SAPK2/p38-dependent F-actin reorganization regulates early membrane blebbing during stress-induced apoptosis. Journal of Cell Biology 1998; 143: 1361–1373, [INFOTRIEVE], [CSA], [CROSSREF]
  • Iba T., Sumpio B. E. Morphological response of human endothelial cells subjected to cyclic strain in vitro. Microvascular Research 1991; 42: 245–254, [INFOTRIEVE], [CSA], [CROSSREF]
  • Jalali S., del Pozo M. A., Chen K., Miao H., Li Y., Schwartz M. A., Shyy J. Y., Chien S. Integrin-mediated mechanotransduction requires its dynamic interaction with specific extracellular matrix (ECM) ligands. Proceeding of the National Academy of Sciences of the United States of America 2001; 98: 1042–1046, [CSA], [CROSSREF]
  • Jiang Y., Chen C., Li Z., Guo W., Gegner J. A., Lin S., Han J. Characterization of the structure and function of a new mitogen-activated protein kinase (p38beta). Journal of Biological Chemistry 1996; 271: 17920–17926, [INFOTRIEVE], [CSA], [CROSSREF]
  • Jo H., Sipos K., Go Y. M., Law R., Rong J., McDonald J. M. Differential effect of shear stress on extracellular signal-regulated kinase and N-terminal Jun kinase in endothelial cells. Gi2- and Gbeta/gamma-dependent signaling pathways. Journal of Biological Chemistry 1997; 272: 1395–1401, [INFOTRIEVE], [CSA], [CROSSREF]
  • Levesque M. J., Nerem R. M. The elongation and orientation of cultured endothelial cells in response to shear stress. Journal of Biomechanical Engineering 1985; 107: 341–347, [INFOTRIEVE], [CSA]
  • Li Z., Jiang Y., Ulevitch R. J., Han J. The primary structure of p38 gamma: A new member of p38 group of MAP kinases. Biochemical and Biophysical Research Communications 1996; 228: 334–340, [INFOTRIEVE], [CSA], [CROSSREF]
  • Malek A. M., Gibbons G. H., Dzau V. J., Izumo S. Fluid shear stress differentially modulates expression of genes encoding basic fibroblast growth factor and platelet-derived growth factor B chain in vascular endothelium. Journal of Clinical Investigation 1993; 92: 2013–2021, [INFOTRIEVE], [CSA]
  • Malek A. M., Izumo S. Control of endothelial cell gene expression by flow. Journal of Biomechanics 1995; 28: 1515–1528, [INFOTRIEVE], [CSA], [CROSSREF]
  • Marinissen M. J., Chiariello M., Gutkind J. S. Regulation of gene expression by the small GTPase Rho through the ERK6 (p38 gamma) MAP kinase pathway. Genes and Development 2001; 15: 535–553, [INFOTRIEVE], [CSA], [CROSSREF]
  • Moriguchi T., Kuroyanagi N., Yamaguchi K., Gotoh Y., Irie K., Kano T., Shirakabe K., Muro Y., Shibuya H., Matsumoto K., Nishida E., Hagiwara M. A novel kinase cascade mediated by mitogen-activated protein kinase kinase 6 and MKK3. Journal of Biological Chemistry 1996; 271: 13675–13679, [INFOTRIEVE], [CSA], [CROSSREF]
  • Raingeaud J., Whitmarsh A. J., Barrett T., Derijard B., Davis R. J. MKK3- and MKK6-regulated gene expression is mediated by the p38 mitogen-activated protein kinase signal transduction pathway. Molecular and Cellular Biology 1996; 16: 1247–1255, [INFOTRIEVE], [CSA]
  • Rousseau S., Houle F., Kotanides H., Witte L., Waltenberger J., Landry J., Huot J. Vascular endothelial growth factor (VEGF)-driven actin-based motility is mediated by VEGFR2 and requires concerted activation of stress-activated protein kinase 2 (SAPK2/p38) and geldanamycin-sensitive phosphorylation of focal adhesion kinase. Journal of Biological Chemistry 2000; 275: 10661–10672, [INFOTRIEVE], [CSA], [CROSSREF]
  • Schaub R. G., Rawlings C. A., Stewart G. J. Scanning electron microscopy of canine pulmonary arteries and veins. American Journal of Veterinary Research 1980; 41: 1441–1446, [INFOTRIEVE], [CSA]
  • Sprague E. A., Steinbach B. L., Nerem R. M., Schwartz C. J. Influence of a laminar steady-state fluid-imposed wall shear stress on the binding, internalization, and degradation of low-density lipoproteins by cultured arterial endothelium. Circulation 1987; 76: 648–656, [INFOTRIEVE], [CSA]
  • Stein B., Brady H., Yang M. X., Young D. B., Barbosa M. S. Cloning and characterization of MEK6, a novel member of the mitogen-activated protein kinase kinase cascade. Journal of Biological Chemistry 1996; 271: 11427–11433, [INFOTRIEVE], [CSA], [CROSSREF]
  • Sumpio B. E. Hemodynamic forces and the biology of the endothelium: Signal transduction pathways in endothelial cells subjected to physical forces in vitro. Journal of Vascular Surgery 1991; 13: 744–746, [INFOTRIEVE], [CSA]
  • Surapisitchat J., Hoefen R. J., Pi X., Yoshizumi M., Yan C., Berk B. C. Fluid shear stress inhibits TNF-alpha activation of JNK but not ERK1/2 or p38 in human umbilical vein endothelial cells: Inhibitory crosstalk among MAPK family members. Proceeding of the National Academy of Sciences of the United States of America 2001; 98: 6476–6481, [CSA], [CROSSREF]
  • Topper J. N., Cai J., Falb D., Gimbrone M. A., Jr. Identification of vascular endothelial genes differentially responsive to fluid mechanical stimuli: Cyclooxygenase-2, manganese superoxide dismutase, and endothelial cell nitric oxide synthase are selectively up-regulated by steady laminar shear stress. Proceeding of the National Academy of Sciences of the United States of America 1996; 93: 10417–10422, [CSA], [CROSSREF]
  • Traub O., Berk B. C. Laminar shear stress: Mechanisms by which endothelial cells transduce an atheroprotective force. Arteriosclerosis, Thrombosis, and Vascular Biology 1998; 18: 677–685, [INFOTRIEVE], [CSA]
  • Tzima E., del Pozo M. A., Shattil S. J., Chien S., Schwartz M. A. Activation of integrins in endothelial cells by fluid shear stress mediates Rho-dependent cytoskeletal alignment. EMBO Journal 2001; 20: 4639–4647, [INFOTRIEVE], [CSA], [CROSSREF]
  • Urbich C., Dernbach E., Reissner A., Vasa M., Zeiher A. M., Dimmeler S. Shear stress-induced endothelial cell migration involves integrin signaling via the fibronectin receptor subunits alpha(5) and beta(1). Arteriosclerosis, Thrombosis, and Vascular Biology 2002; 22: 69–75, [INFOTRIEVE], [CSA], [CROSSREF]
  • Wang X. S., Diener K., Manthey C. L., Wang S., Rosenzweig B., Bray J., Delaney J., Cole C. N., Chan-Hui P. Y., Mantlo N., Lichenstein H. S., Zukowski M., Yao Z. Molecular cloning and characterization of a novel p38 mitogen-activated protein kinase. Journal of Biological Chemistry 1997; 272: 23668–23674, [INFOTRIEVE], [CSA], [CROSSREF]
  • Zhang S., Han J., Sells M. A., Chernoff J., Knaus U. G., Ulevitch R. J., Bokoch G. M. Rho family GTPases regulate p38 mitogen-activated protein kinase through the downstream mediator Pak1. Journal of Biological Chemistry 1995; 270: 23934–23936, [INFOTRIEVE], [CSA], [CROSSREF]

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.