Publication Cover
Endothelium
Journal of Endothelial Cell Research
Volume 14, 2007 - Issue 2
42
Views
28
CrossRef citations to date
0
Altmetric
Regular Articles

Mesenchymal Stem Cells Induce Endothelial Activation via Paracine Mechanisms

, , , , , & show all
Pages 53-63 | Received 11 Jun 2006, Accepted 25 Feb 2007, Published online: 13 Jul 2009

REFERENCES

  • Adelstein R. S., Klee C. B. Purification and characterization of smooth muscle myosin light chain kinase. Journal of Biological Chemistry, 1981; 256: 7501–7509
  • Assmus B., Schachinger V., Teupe C., Britten M., Lehmann R., Dobert N., Grunwald F., Aicher A., Urbich C., Martin H., Hoelzer D., Dimmeler S., Zeiher A. M. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI). Circulation, 2002; 106: 3009–3017
  • Barbash I. M., Chouraqui P., Baron J., Feinberg M. S., Etzion S., Tessone A., Miller L., Guetta E., Zipori D., Kedes L. H., Kloner R. A., Leor J. Systemic delivery of bone marrow-derived mesenchymal stem cells to the infarcted myocardium: Feasibility, cell migration, and body distribution. Circulation 2003; 108: 863–868
  • Bittner R. E., Schofer C., Weipoltshammer K., Ivanova S., Streubel B., Hauser E., Freilinger M., Hoger H., Elbe-Burger A., Wachtler F. Recruitment of bonemarrow-derived cells by skeletal and cardiac muscle in adult dystrophic mdx mice. Anatomy and Embryology (Berlin) 1999; 199: 391–396
  • Busse R., Mulsch A. Calcium-dependent nitric oxide synthesis in endothelial cytosol is mediated by calmodulin. FEBS Letters, 1990; 265: 133–136
  • Chen S. L., Fang W. W., Ye F., Liu Y. H., Qian J., Shan S. J., Zhang J. J., Chunhua R. Z., Liao L. M., Lin S., Sun J. P. Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. American Journal of Cardiology, 2004; 94: 92–95
  • David-Dufilho M., Millanvoye-Van Brussel E., Topal G., Walch L., Brunet A., Rendu F. Endothelial thrombomodulin induces Ca2+ signals and nitric oxide synthesis through epidermal growth factor receptor kinase and calmodulin kinase II. Journal of Biological Chemistry, 2005; 280: 35999–36006
  • de Bari C., Dell'Accio F., Vandenabeele F., Vermeesch J. R., Raymackers J. M., Luyten F. P. Skeletal muscle repair by adult human mesenchymal stem cells from synovial membrane. Journal of Cell Biology, 2003; 160: 909–918
  • Dimmeler S., Fleming I., Fisslthaler B., Hermann C., Busse R., Zeiher A. M. Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature, 1999; 399: 601–605
  • Di Pietro R., Mariggio M. A., Guarnieri S., Sancilio S., Giardinelli A., Di Silvestre S., Consoli A., Zauli G., Pandolfi A. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) regulates endothelial nitric oxide synthase (eNOS) activity and its localization within the human vein endothelial cells (HUVEC) in culture. J Cell Biochem, 2006; 97: 782–794
  • Fleming I., Fisslthaler B., Dimmeler S., Kemp B. E., Busse R. Phosphorylation of Thr(495) regulates Ca(2+)/calmodulin-dependent endothelial nitric oxide synthase activity. Circulation Research, 2001; 88: E68–E75
  • Forstermann U., Pollock J. S., Schmidt H. H., Heller M., Murad F. Calmodulin-dependent endothelium-derived relaxing factor/nitric oxide synthase activity is present in the particulate and cytosolic fractions of bovine aortic endothelial cells. Proceedings of the National Academy of Sciences of the United States of America, 1991; 88: 1788–1792
  • Forstermann U., Schmidt H. H., Pollock J. S., Sheng H., Mitchell J. A., Warner T. D., Nakane M., Murad F. Isoforms of nitric oxide synthase. Characterization and purification from different cell types. Biochemical Pharmacology, 1991; 42: 1849–1857
  • Fuchs S., Baffour R., Zhou Y. F., Shou M., Pierre A., Tio F. O., Weissman N. J., Leon M. B., Epstein S. E., Kornowski R. Transendocardial delivery of autologous bone marrow enhances collateral perfusion and regional function in pigs with chronic experimental myocardial ischemia. Journal of the American College of Cardiology, 2001; 37: 1726–1732
  • Fulton D., Gratton J. P., McCabe T. J., Fontana J., Fujio Y., Walsh K., Franke T. F., Papapetropoulos A., Sessa W. C. Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature, 1999; 399: 597–601
  • Fulton D., Gratton J. P., Sessa W. C. Post-translational control of endothelial nitric oxide synthase: Why isn't calcium/calmodulin enough?. Journal of Pharmacology and Experimental Therapy, 2001; 299: 818–824
  • Furchgott R. F., Zawadzki J. V. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature, 1980; 288: 373–376
  • Gallis B., Corthals G. L., Goodlett D. R., Ueba H., Kim F., Presnell S. R., Figeys D., Harrison D. G., Berk B. C., Aebersold R., Corson M. A. Identification of flow-dependent endothelial nitric-oxide synthase phosphorylation sites by mass spectrometry and regulation of phosphorylation and nitric oxide production by the phosphatidylinositol 3-kinase inhibitor LY294002. Journal of Biological Chemistry, 1999; 274: 30101–30108
  • Gelinas D. S., Bernatchez P. N., Rollin S., Bazan N. G., Sirois M. G. Immediate and delayed VEGF-mediated NO synthesis in endothelial cells: Role of PI3K, PKC and PLC pathways. British Journal of Pharmacology, 2002; 137: 1021–1030
  • Goodell M. A., Jackson K. A., Majka S. M., Mi T., Wang H., Pocius J., Hartley C. J., Majesky M. W., Entman M. L., Michael L. H., Hirschi K. K. Stem cell plasticity in muscle and bone marrow. Annals of the New York Academy of Sciences, 2001; 938: 208–218, discussion 218–220
  • Huang A. J., Manning J. E., Bandak T. M., Ratau M. C., Hanser K. R., Silverstein S. C. Endothelial cell cytosolic free calcium regulates neutrophil migration across monolayers of endothelial cells. Journal of Cell Biology, 1993; 120: 1371–1380
  • Ignarro L. J., Cirino G., Casini A., Napoli C. Nitric oxide as a signaling molecule in the vascular system: an overview. Journal of Cardiovascular Pharmacology, 1999; 34: 879–886
  • Itoh Y., Ma F. H., Hoshi H., Oka M., Noda K., Ukai Y., Kojima H., Nagano T., Toda N. Determination and bioimaging method for nitric oxide in biological specimens by diaminofluorescein fluorometry. Analytical Biochemistry, 2000; 287: 203–209
  • Jackson K. A., Majka S. M., Wang H., Pocius J., Hartley C. J., Majesky M. W., Entman M. L., Michael L. H., Hirschi K. K., Goodell M. A. Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. Journal of Clinical Investigation, 2001; 107: 1395–1402
  • Jiang Y., Jahagirdar B. N., Reinhardt R. L., Schwartz R. E., Keene C. D., Ortiz-Gonzalez X. R., Reyes M., Lenvik T., Lund T., Blackstad M., Du J., Aldrich S., Lisberg A., Low W. C., Largaespada D. A., Verfaillie C. M. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature, 2002; 418: 41–49
  • Kang H. J., Kim H. S., Zhang S. Y., Park K. W., Cho H. J., Koo B. K., Kim Y. J., Soo Lee D., Sohn D. W., Han K. S., Oh B. H., Lee M. M., Park Y. B. Effects of intracoronary infusion of peripheral blood stem-cells mobilised with granulocyte colony stimulating factor on left ventricular systolic function and restenosis after coronary stenting in myocardial infarction: The MAGIC cell randomised clinical trial. Lancet, 2004; 363: 751–756
  • Kao J. P., Harootunian A. T., Tsien R. Y. Photochemically generated cytosolic calcium pulses and their detection by fluo-3. Journal of Biological Chemistry, 1989; 264: 8179–8184
  • Kawamoto A., Tkebuchava T., Yamaguchi J., Nishimura H., Yoon Y. S., Milliken C., Uchida S., Masuo O., Iwaguro H., Ma H., Hanley A., Silver M., Kearney M., Losordo D. W., Isner J. M., Asahara T. Intramyocardial transplantation of autologous endothelial progenitor cells for therapeutic neovascularization of myocardial ischemia. Circulation, 2003; 107: 461–468
  • Kinnaird T., Stabile E., Burnett M. S., Lee C. W., Barr S., Fuchs S., Epstein S. E. Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circulation Research, 2004a; 94: 678–685
  • Kinnaird T., Stabile E., Burnett M. S., Shou M., Lee C. W., Barr S., Fuchs S., Epstein S. E. Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation, 2004b; 109: 1543–1549
  • Koike N., Fukumura D., Gralla O., Au P., Schechner J. S., Jain R. K. Tissue engineering: creation of long-lasting blood vessels. Nature, 2004; 428: 138–139
  • Kojima H., Nakatsubo N., Kikuchi K., Kawahara S., Kirino Y., Nagoshi H., Hirata Y., Nagano T. Detection and imaging of nitric oxide with novel fluorescent indicators: Diaminofluoresceins. Anal Chem, 1998; 70: 2446–2453
  • Kuznetsov S. A., Mankani M. H., Gronthos S., Satomura K., Bianco P., Robey P. G. Circulating skeletal stem cells. Journal of Cell Biology, 2001; 153: 1133–1140
  • Leikert J. F., Rathel T. R., Muller C., Vollmar A. M., Dirsch V. M. Reliable in vitro measurement of nitric oxide released from endothelial cells using low concentrations of the fluorescent probe 4,5-diaminofluorescein. FEBS Letters, 2001; 506: 131–134
  • Li H., Burkhardt C., Heinrich U. R., Brausch I., Xia N., Forstermann U. Histamine upregulates gene expression of endothelial nitric oxide synthase in human vascular endothelial cells. Circulation, 2003; 107: 2348–2354
  • Li T. S., Hayashi M., Ito H., Furutani A., Murata T., Matsuzaki M., Hamano K. Regeneration of infarcted myocardium by intramyocardial implantation of ex vivo transforming growth factor-beta-preprogrammed bone marrow stem cells. Circulation, 2005a; 111: 2438–2445
  • Li W. J., Tuli R., Okafor C., Derfoul A., Danielson K. G., Hall D. J., Tuan R. S. A three-dimensional nanofibrous scaffold for cartilage tissue engineering using human mesenchymal stem cells. Biomaterials, 2005b; 26: 599–609
  • Loetscher P., Seitz M., Clark-Lewis I., Baggiolini M., Moser B. Activation of NK cells by CC chemokines. The Journal of Immunology, 1996; 156: 322–327
  • Meinel L., Karageorgiou V., Fajardo R., Snyder B., Shinde-Patil V., Zichner L., Kaplan D., Langer R., Vunjak-Novakovic G. Bone tissue engineering using human mesenchymal stem cells: Effects of scaffold material and medium flow. Annals of Biomedical Engineering, 2004a; 32: 112–122
  • Meinel L., Karageorgiou V., Hofmann S., Fajardo R., Snyder B., Li C., Zichner L., Langer R., Vunjak-Novakovic G., Kaplan D. L. Engineering bone-like tissue in vitro using human bone marrow stem cells and silk scaffolds. Journal of Biomedical Materials Research A, 2004b; 71: 25–34
  • Michell B. J., Griffiths J. E., Mitchelhill K. I., Rodriguez-Crespo I., Tiganis T., Bozinovski S., de Montellano P. R., Kemp B. E., Pearson R. B. The Akt kinase signals directly to endothelial nitric oxide synthase. Curr Biol, 1999; 9: 845–848
  • Mottola A., Antoniotti S., Lovisolo D., Munaron L. Regulation of noncapacitative calcium entry by arachidonic acid and nitric oxide in endothelial cells. FASEB Journal, 2005; 19: 2075–2077
  • Nygren J. M., Jovinge S., Breitbach M., Sawen P., Roll W., Hescheler J., Taneera J., Fleischmann B. K., Jacobsen S. E. Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation. Nature Medicine, 2004; 10: 494–501
  • Orlic D., Kajstura J., Chimenti S., Jakoniuk I., Anderson S. M., Li B., Pickel J., McKay R., Nadal-Ginard B., Bodine D. M., Leri A., Anversa P. Bone marrow cells regenerate infarcted myocardium. Nature, 2001a; 410: 701–705
  • Orlic D., Kajstura J., Chimenti S., Limana F., Jakoniuk I., Quaini F., Nadal-Ginard B., Bodine D. M., Leri A., Anversa P. Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proceedings of the National Academy of Sciences of the United States of America, 2001b; 98: 10344–10349
  • Pott C., Brixius K., Bölck B., Steinritz D., Mehlhorn U., Schwinger R. H.G., Bloch W. eNOS-Translocation but not eNOS-Phosphorylation is dependent on intracellular Ca2+ in human atrial Myocardium. British Journal of Pharmacology, 2004; 143: 1014–1022
  • Roufosse C. A., Direkze N. C., Otto W. R., Wright N. A. Circulating mesenchymal stem cells. International Journal of Biochemistry and Cell Biology, 2004; 36: 585–597
  • Sakamato T., Ishibashi T., Sakamato N., Sugimoto K., Egashira K., Myruyama Y. Endogenous NO blockade enhances tissue factor expression via increased Ca2+ influx through MCP-1 in endothelial cells by monocyte adhesion. Thrombosis, 2005; 25
  • Sessa W. C. eNOS at a glance. Journal of Cell Sciences, 2004; 117: 2427–2429
  • Singer H. A., Peach M. J. Calcium- and endothelial-mediated vascular smooth muscle relaxation in rabbit aorta. Hypertension, 1982; 4: 19–25
  • Sordi V., Malosio M. L., Marchesi F., Mercalli A., Melzi R., Giordano T., Belmonte N., Ferrari G., Leone B. E., Bertuzzi F., Zerbini G., Allavena P., Bonifacio E., Piemonti L. Bone marrow mesenchymal stem cells express a restricted set of functionally active chemokine receptors capable of promoting migration to pancreatic islets. Blood, 2005; 106: 419–427
  • Valgimigli M., Rigolin G. M., Cittanti C., Malagutti P., Curello S., Percoco G., Bugli A. M., Porta M. D., Bragotti L. Z., Ansani L., Mauro E., Lanfranchi A., Giganti M., Feggi L., Castoldi G., Ferrari R. Use of granulocyte-colony stimulating factor during acute myocardial infarction to enhance bone marrow stem cell mobilization in humans: Clinical and angiographic safety profile. European Heart Journal, 2005; 26: 1838–1845
  • Wollert K. C., Meyer G. P., Lotz J., Ringes-Lichtenberg S., Lippolt P., Breidenbach C., Fichtner S., Korte T., Hornig B., Messinger D., Arseniev L., Hertenstein B., Ganser A., Drexler H. Intracoronary autologous bone-marrow cell transfer after myocardial infarction: The BOOST randomised controlled clinical trial. Lancet, 2004; 364: 141–148
  • Wysolmerski R. B., Lagunoff D. Involvement of myosin light-chain kinase in endothelial cell retraction. Proceedings of the National Academy of Sciences of the United States of America, 1990; 87: 16–20
  • Yoon Y. S., Wecker A., Heyd L., Park J. S., Tkebuchava T., Kusano K., Hanley A., Scadova H., Qin G., Cha D. H., Johnson K. L., Aikawa R., Asahara T., Losordo D. W. Clonally expanded novel multipotent stem cells from human bone marrow regenerate myocardium after myocardial infarction. Journal of Clinical Investigation, 2005; 115: 326–338

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.