209
Views
34
CrossRef citations to date
0
Altmetric
Original Articles

Using support vector regression coupled with the genetic algorithm for predicting acute toxicity to the fathead minnow

, , , , , , , , & show all
Pages 559-570 | Received 25 Jan 2010, Accepted 05 May 2010, Published online: 04 Sep 2010

References

  • Höfer , T , Gerner , I , Gundert-Remy , U , Liebsch , M , Schulte , A , Spielmann , H , Vogel , R and Wettig , K . 2004 . Animal testing and alternative approaches for the human health risk assessment under the proposed new European chemicals regulation . Arch. Toxicol. , 78 : 549 – 564 .
  • Moore , DRJ , Breton , RL and MacDonald , DB . 2003 . A comparison of model performance for six quantitative structure–activity relationship packages that predict acute toxicity to fish . Environ. Toxicol. Chem. , 22 : 1799 – 1809 .
  • Papa , E , Villa , F and Gramatica , P . 2005 . Statistically validated QSARs, based on theoretical descriptors, for modeling aquatic toxicity of organic chemicals in Pimephales promelas (fathead minnow) . J. Chem. Inf. Model. , 45 : 1256 – 1266 .
  • Netzeva , TI , Pavan , M and Worth , AP . 2008 . Review of (quantitative) structure–activity relationships for acute aquatic toxicity . QSAR Comb. Sci. , 27 : 77 – 90 .
  • Cronin , MTD , Walker , JD , Jaworska , JS , Comber , MHI , Watts , CD and Worth , AP . 2003 . Use of QSARs in international decision-making frameworks to predict ecologic effects and environmental fate of chemical substances . Environ. Health Perspect. , 111 : 1376 – 1390 .
  • Ankley , GT and Villeneuve , DL . 2006 . The fathead minnow in aquatic toxicology: Past, present and future . Aquat. Toxicol. , 78 : 91 – 102 .
  • Smiesko , M and Benfenati , E . 2004 . Predictive models for aquatic toxicity of aldehydes designed for various model chemistries . J. Chem. Inf. Comput. Sci. , 44 : 976 – 984 .
  • Smieško , M and Benfenati , E . 2005 . Thermodynamic descriptors derived from density functional theory calculations in prediction of aquatic toxicity . J. Chem. Inf. Model. , 45 : 379 – 385 .
  • Toropov , AA and Benfenati , E . 2004 . QSAR modelling of aldehyde toxicity by means of optimisation of correlation weights of nearest neighbouring codes . J. Mol. Struct. THEOCHEM , 676 : 165 – 169 .
  • Kulkarni , SA , Raje , DV and Chakrabarti , T . 2001 . Quantitative structure–activity relationships based on functional and structural characteristics of organic compounds . SAR QSAR Environ. Res. , 12 : 565 – 591 .
  • Öberg , T . 2004 . A QSAR for baseline toxicity: Validation, domain of application, and prediction . Chem. Res. Toxicol. , 17 : 1630 – 1637 .
  • Yuan , H , Wang , YY and Cheng , YY . 2007 . Mode of action-based local QSAR modeling for the prediction of acute toxicity in the fathead minnow . J. Mol. Graph. , 26 : 327 – 335 .
  • Zhao , YH , Cronin , MTD and Dearden , JC . 1998 . Quantitative structure–activity relationships of chemicals acting by non-polar narcosis—theoretical considerations . Quant. Struct.-Act. Relat. , 17 : 131 – 138 .
  • Dearden , JC , Cronin , MTD , Zhao , YH and Raevsky , OA . 2000 . QSAR studies of compounds acting by polar and nonpolar narcosis: An examination of the role of polarisability and hydrogen bonding . Quant. Struct.-Act. Relat. , 19 : 3 – 9 .
  • Maunz , A and Helma , C . 2008 . Prediction of chemical toxicity with local support vector regression and activity-specific kernels . SAR QSAR Environ. Res. , 19 : 413 – 431 .
  • Colombo , A , Benfenati , E , Karelson , M and Maran , U . 2008 . The proposal of architecture for chemical splitting to optimize QSAR models for aquatic toxicity . Chemosphere , 72 : 772 – 780 .
  • Pavan , M , Netzeva , TI and Worth , AP . 2006 . Validation of a QSAR model for acute toxicity . SAR QSAR Environ. Res. , 17 : 147 – 171 .
  • He , L and Jurs , PC . 2005 . Assessing the reliability of a QSAR model's predictions . J. Mol. Graph. , 23 : 503 – 523 .
  • Kumar , S , Kumar , M , Stoll , R and Kragl , U . 2007 . Handling uncertainties in toxicity modelling using a fuzzy filter . SAR QSAR Environ. Res. , 18 : 645 – 662 .
  • Maran , U , Sild , S , Mazzatorta , P , Casalegno , M , Benfenati , E and Romberg , M . 2007 . “ Grid computing for the estimation of toxicity: Acute toxicity on fathead minnow (Pimephales promelas) ” . In Distributed, High-Performance and Grid Computing in Computational Biology , Edited by: Dubitzky , W , Schuster , A , Sloot , PMA , Schroeder , M and Romberg , M . 60 – 74 . Berlin : Springer .
  • Hewitt , M , Cronin , MTD , Madden , JC , Rowe , PH , Johnson , C , Obi , A and Enoch , SJ . 2007 . Consensus QSAR models: Do the benefits outweigh the complexity? . J. Chem. Inf. Model. , 47 : 1460 – 1468 .
  • Amini , A , Muggleton , SH , Lodhi , H and Sternberg , MJE . 2007 . A novel logic-based approach for quantitative toxicology prediction . J. Chem. Inf. Model. , 47 : 998 – 1006 .
  • Casalegno , M , Benfenati , E and Sello , G . 2005 . An automated group contribution method in predicting aquatic toxicity: The diatomic fragment approach . Chem. Res. Toxicol. , 18 : 740 – 746 .
  • Netzeva , TI , Aptula , AO , Benfenati , E , Cronin , MTD , Gini , G , Lessigiarska , I , Maran , U , Vračko , M and Schüürmann , G . 2005 . Description of the electronic structure of organic chemicals using semiempirical and ab initio methods for development of toxicological QSARs . J. Chem. Inf. Model. , 45 : 106 – 114 .
  • Gini , G , Craciun , MV , König , C and Benfenati , E . 2004 . Combining unsupervised and supervised artificial neural networks to predict aquatic toxicity . J. Chem. Inf. Comput. Sci. , 44 : 1897 – 1902 .
  • Mazzatorta , P , Vracčko , M , Jezierska , A and Benfenati , E . 2003 . Modeling toxicity by using supervised Kohonen neural networks . J. Chem. Inf. Comput. Sci. , 43 : 485 – 492 .
  • Niculescu , SP , Atkinson , A , Hammond , G and Lewis , M . 2004 . Using fragment chemistry data mining and probabilistic neural networks in screening chemicals for acute toxicity to the fathead minnow . SAR QSAR Environ. Res. , 15 : 293 – 309 .
  • Schölkopf , B and Smola , AJ . 2002 . Learning with Kernels , Cambridge , MA : MIT Press .
  • Burbidge , R , Trotter , M , Buxton , B and Holden , S . 2001 . Drug design by machine learning: Support vector machines for pharmaceutical data analysis . Comput. Chem. , 26 : 5 – 14 .
  • Zhang , H , Chen , QY , Xiang , ML , Ma , CY , Huang , Q and Yang , SY . 2009 . In silico prediction of mitochondrial toxicity by using GA-CG-SVM approach . Toxicol. Vitro , 23 : 134 – 140 .
  • Feiwei , S , Liuliang , C and Miaobin , Y . 2009 . Support vector machine with genetic algorithm for forecasting of key-gas ratios in oil-immersed transformer . Expert Syst. Appl. , 36 : 6326 – 6331 .
  • Distributed Structure-Searchable Toxicity (DSSTox) Public Database Network; available from http://www.epa.gov/ncct/dsstox/sdf_epafhm.html
  • Russom , CL , Bradbury , SP , Broderius , SJ , Hammermeister , DE and Drummond , RA . 1997 . Predicting modes of toxic action from chemical structure: Acute toxicity in the fathead minnow (Pimephales promelas) . Environ. Toxicol. Chem. , 16 : 948 – 967 .
  • AMPAC, Semichem, Inc., Shawnee, KS 66216
  • COmprehensive DEscriptors for Structural and Statistical Analysis (CODESSA), Semichem, Inc., Shawnee, KS 66216
  • Accelrys Discovery Studio, Accelrys Software Inc., San Diego, CA 92121
  • Kennard , RW and Stone , LA . 1969 . Computer aided design of experiments . Technometrics , 11 : 137 – 148 .
  • Wu , W , Walczak , B , Massart , DL , Heuerding , S , Erni , F , Last , IR and Prebble , KA . 1996 . Artificial neural networks in classification of NIR spectral data: Design of the training set . Chemom. Intell. Lab. Syst. , 33 : 35 – 46 .
  • Daszykowski , DLMM and Walczak , B . 2002 . Representative subset selection . Anal. Chim. Acta , 468 : 91 – 103 .
  • Chang , CC and Lin , CJ . LIBSVM: a library for support vector machines, 2001; software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm
  • Vapnik , V . 1995 . The Nature of Statistical Learning Theory , New York : Springer .
  • Vapnik , VN . 1998 . Statistical Learning Theory , New York : Wiley-Interscience .
  • Katritzky , AR , Lobanov , VS and Karelson , M . 1995–1997 . CODESSA Reference Manual, Version 2.0 , Shawnee : Semichem and the University of Florida .
  • Verhaar , HJM , van Leeuwen , CJ and Hermens , JLM . 1992 . Classifying environmental pollutants. 1: Structure–activity relationships for prediction of aquatic toxicity . Chemosphere , 25 : 471 – 491 .
  • Könemann , H . 1981 . Quantitative structure–activity relationships in fish toxicity studies. Part I: tionship for 50 industrial pollutants . Toxicology , 19 : 209 – 221 .
  • Veith , GD , Call , DJ and Brooke , LT . 1983 . Structure–toxicity relationships for the fathead minnow, Pimephales promelas: Narcotic industrial chemicals . Can. J. Fish. Aquat. Sci. , 40 : 743 – 748 .
  • Hermens , JLM . 1990 . Electrophiles and acute toxicity to fish . Environ. Health Perspect. , 87 : 219 – 225 .
  • Maggiora , GM . 2006 . On outliers and activity cliffs—why QSAR often disappoints . J. Chem. Inf. Model. , 46 : 1535

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.