559
Views
36
CrossRef citations to date
0
Altmetric
Articles

On the rational formulation of alternative fuels: melting point and net heat of combustion predictions for fuel compounds using machine learning methods

, , , &
Pages 259-277 | Received 14 Jun 2012, Accepted 20 Jul 2012, Published online: 10 Apr 2013

References

  • Schulz , H. 1999 . Short history and present trends of Fischer–Tropsch synthesis . App. Catal. A , 186 : 3 – 12 .
  • Murata , K. , Liu , Y. , Inaba , M. and Takahara , I. 2010 . Production of synthetic diesel by hydrotreatment of Jatropha oils using Pt−Re/H-ZSM-5 catalyst . Energy Fuels , 24 : 2404 – 2409 .
  • W. Weiss, H. Dulot, A. Quignard, N. Charon, and M. Courtiade, Direct coal to liquids (DCL): High quality jet fuels. 27th Annual International Pittsburgh Coal Conference, 2010.
  • Carlson , T.R. , Tompsett , G.A. , Conner , W.C. and Huber , G.W. 2009 . Aromatic production from catalytic fast pyrolysis of biomass-derived feedstocks . Top. Catal. , 52 : 241 – 252 .
  • Demirbas , A. 2009 . Progress and recent trends in biodiesel fuels . Energy Convers. Manage. , 50 : 14 – 34 .
  • Demirbas , M.F. 2009 . Biorefineries for biofuel upgrading: A critical review . Appl. Energy , 86 : S151 – S161 .
  • Androulakis , I.P. , Weisel , M.D. , Hsu , C.S. , Qian , K. , Green , L.A. and Farrell , J.T. 2005 . An integrated approach for creating model diesel fuels . Energy Fuels , 19 : 111 – 119 .
  • Saldana , D.A. , Starck , L. , Mougin , P. , Rousseau , B. , Pidol , L. , Jeuland , N. and Creton , B. 2011 . Flash point and cetane number predictions for fuel compounds using quantitative structure property relationship (QSPR) methods . Energy Fuels , 25 : 3900 – 3908 .
  • Creton , B. , Dartiguelongue , C. , de Bruin , T. and Toulhoat , H. 2010 . Prediction of the cetane number of diesel compounds using the quantitative structure property relationship . Energy Fuels , 24 : 5396 – 5403 .
  • Saldana , D.A. , Starck , L. , Mougin , P. , Rousseau , B. , Ferrando , N. and Creton , B. 2012 . Prediction of the density and viscosity of fuel compounds using machine learning methods . Energy Fuels , 26 : 2416 – 2426 .
  • Katritzky , A.R. , Jain , R. , Lomaka , A. , Petrukhin , R. , Maran , U. and Karelson , M. 2001 . Perspective on the relationship between melting points and chemical structure . Cryst. Growth Des. , 1 : 261 – 265 .
  • Katritzky , A.R. , Kuanar , M. , Slavov , S. and Hall , C.D. 2010 . Quantitative correlation of physical and chemical properties with chemical structure: Utility for prediction . Chem. Rev. , 110 : 5714 – 5789 .
  • Needham , D.E. , Wei , I.-C. and Seybold , P.G. 1988 . Molecular modeling of the physical properties of the alkanes . J. Am. Chem. Soc. , 110 : 4196 – 4194 .
  • Charton , M. and Charton , B. 1994 . Quantitative description of structural effects on melting points of substituted alkanes . J. Phys. Org. Chem. , 7 : 196 – 206 .
  • Burch , K.J. and Whitehead , E.G. 2004 . Melting-point models of alkanes . J. Chem. Eng. Data , 49 : 858 – 863 .
  • Katritzky , A.R. , Maran , U. , Karelson , M. and Lobanov , V.S. 1997 . Prediction of melting points for the substituted benzenes: A QSPR approach . J. Chem. Inf. Comput. Sci. , 37 : 913 – 919 .
  • Katritzky , A.R. and Gordeeva , E.V. 1993 . Traditional topological indices vs electronic, geometrical, and combined molecular descriptors in QSAR/QSPR research . J. Chem. Inf. Comput. Sci. , 33 : 835 – 857 .
  • Guendouzi , A. and Mekelleche , S.M. 2012 . Prediction of the melting points of fatty acids from computed molecular descriptors: A quantitative structure–property relationship study . Chem. Phys. Lipids , 165 : 1 – 6 .
  • Lazzús , J.A. 2009 . Neural network based on quantum chemistry for predicting melting point of organic compounds . Chin. J. Chem. Phys. , 22 : 19 – 26 .
  • Keshavarz , M.H. , Gharagheizi , F. and Pouretedal , H.R. 2011 . Improved reliable approach to predict melting points of energetic compounds . Fluid Phase Equilib. , 308 : 114 – 128 .
  • Hughes , L.D. , Palmer , D.S. , Nigsch , F. and Mitchell , J.B.O. 2008 . Why are some properties more difficult to predict than others? A study of QSPR models of solubility, melting point, and log P . J. Chem. Inf. Model. , 48 : 220 – 232 .
  • Nordström , F.L. and Rasmuson , Å.C. 2009 . Prediction of solubility curves and melting properties of organic and pharmaceutical compounds . Eur. J. Pharm. Sci. , 36 : 330 – 344 .
  • Jain , A. , Yang , G. and Yalkowsky , S.H. 2004 . Estimation of melting points of organic compounds . Ind. Eng. Chem. Res. , 43 : 7618 – 7621 .
  • Karthikeyan , M. 2005 . General melting point prediction based on a diverse compound dataset and artificial neural networks . J. Chem. Inf. Model. , 45 : 581 – 590 .
  • Bhat , A.U. , Merchant , S.S. and Bhagwat , S.S. 2008 . Prediction of melting points of organic compounds using extreme learning machines . Ind. Eng. Chem. Res. , 47 : 920 – 925 .
  • Tsuchiya , Y. , Hasegawa , H. and Iwatsubo , T. 2001 . Prediction of the melting point of n-alkanes using the molecular dynamics method . J. Chem. Phys. , 114 : 2484 – 2488 .
  • Kharash , M. 1929 . Heats of combustion of organic compounds . Bureau Standards J. Res. , 2 : 359 – 430 .
  • Duchowicz , P.R. , Garro , J.C.M. , Andrada , M.F. , Castro , E.A. and Fernández , F.M. 2007 . QSPR modeling of heats of combustion for carboxylic acids . QSAR Comb. Sci. , 26 : 647 – 652 .
  • Gharagheizi , F. 2008 . A simple equation for prediction of net heat of combustion of pure chemicals . Chem. Intell. Lab. Syst. , 91 : 177 – 180 .
  • Cao , H.Y. , Jiang , J.C. , Pan , Y. , Wang , R. and Cui , Y. 2009 . Prediction of the net heat of combustion of organic compounds based on atom-type electrotopological state indices . J. Loss Prev. Proc. Ind. , 22 : 222 – 227 .
  • Pan , Y. , Jiang , J.C. , Wang , R. and Jiang , J.J. 2011 . Predicting the net heat of combustion of organic compounds from molecular structures based on ant colony optimization . J. Loss Prev. Proc. Ind. , 24 : 85 – 89 .
  • Gharagheizi , F. , Mirkhani , S.A. and Mahyari , A.-R.T. 2011 . Prediction of standard enthalpy of combustion of pure compounds using a very accurate group-contribution-based method . Energy Fuels , 25 : 2651 – 2654 .
  • Rowley , R.L. , Wilding , W.V. , Oscarson , J.L. , Yang , Y. , Zundel , N.A. , Daubert , T.E. and Danner , R.P. 2003 . DIPPR® Data Compilation of Pure Compound Properties , New York : Design Institute for Physical Properties, AIChE .
  • P.J. Linstrom and W.G. Mallard, NIST Chemistry WebBook, NIST Standard Reference Database Number 69, National Institute of Standards and Technology, Gaithersburg MD, 20899, http://webbook.nist.gov [accessed 25 April 2012].
  • Yaws , C.L. 2003 . Yaws’ Handbook of Thermodynamic and Physical Properties of Chemical Compounds , Norwich , NY : Knovel .
  • Chemaxon, www.chemicalize.org, accessed 2012.
  • The Open Babel Package, Version 2.2.3, http://openbabel.org, accessed 2010.
  • O’Boyle , N.M. , Morley , C. and Hutchison , G.R. 2008 . Pybel: A Python wrapper for the OpenBabel cheminformatics toolkit . Chem. Cent. J. , 2 : 1 – 7 .
  • Sun , H. 1998 . COMPASS: An ab initio force-field optimized for condensed-phase applicationsOverview with details on alkane and benzene compounds . J. Phys. Chem. B , 102 : 7338 – 7364 .
  • Gasteiger , J. and Marsili , M. 1978 . A new model for calculating atomic charges in molecules . Tetrahedron Lett. , 19 : 3181 – 3184 .
  • Materials Studio, Version 5.0, Accelrys Software Inc., San Diego, CA, 2009.
  • SMARTS − A Language for Describing Molecular Patterns, Daylight Chemical Information Systems Inc, Laguna Niguel, CA. Available at www.daylight.com/dayhtml/doc/theory/theory.smarts.html (accessed 2011).
  • development core team, : A language and environment for statistical computing, Foundation for Statistical Computing; Vienna, 2011.
  • Puzyn , T. , Mostrag-Szlichtyng , A. , Gajewicz , A. , Skrzynski , M. and Worth , A.P. 2011 . Investigating the influence of data splitting on the predictive ability of QSAR/QSPR models . Struct. Chem. , 22 : 795 – 804 .
  • Chen , S. and Billings , S.A. 1992 . Neural networks for nonlinear dynamic system modeling and identification . Intern. J. Cont. , 56 : 319 – 346 .
  • Niwa , T. 2003 . Using general regression and probabilistic neural networks to predict human intestinal absorption with topological descriptors derived from two-dimensional chemical structures . J. Chem. Inf. Comput. Sci. , 43 : 113 – 119 .
  • Goulon , A. , Picot , T. , Duprat , A. and Dreyfus , G. 2007 . Predicting activities without computing descriptors: Graph machines for QSAR . SAR QSAR Environ. Res. , 18 : 141 – 153 .
  • Hansen , L.K. and Salamon , P. 1990 . Neural networks ensembles . IEEE Trans. Pattern Anal. Mach. Intell. , 12 : 993 – 1001 .
  • Vapnik , V.N. 1995 . The Nature of Statistical Learning Theory , Berlin : Springer .
  • Vapnik , V.N. 1998 . Statistical Learning Theory , New York : J. Wiley .
  • Tropsha , A. 2010 . Best practices for QSAR model development, validation, and exploitation . Mol. Inform. , 29 : 476 – 488 .
  • Dalmazzone , D. , Kharrat , M. , Lachet , V. , Fouconnier , B. and Clausse , D. 2002 . DSC AND PVT MEASUREMENTS Methane and trichlorofluoromethane hydrate dissociation equilibria . J. Therm. Anal. Calor. , 70 : 493 – 505 .
  • C. Dalmazzone, B. Herzhaft, L. Rousseau, P. Le Parlouer, and D. Dalmazzone, Prediction of gas hydrates formation with DSC technique, SPE Annual Technical Conference and Exhibition, 5–8 October 2003, Denver, Colorado.
  • Marrero , J. and Gani , R. 2001 . Group-contribution based estimation of pure component properties . Fluids Phase Equil. , 183 : 183 – 208 .
  • Brown , N. , McKay , B. and Gasteiger , J. 2006 . A novel workflow for the inverse QSPR problem using multiobjective optimization . J. Comput. Aided Mol. Des. , 20 : 333 – 341 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.