856
Views
58
CrossRef citations to date
0
Altmetric
Articles

QSPR prediction of physico-chemical properties for REACH

, &
Pages 279-318 | Received 06 Jun 2012, Accepted 06 Sep 2012, Published online: 25 Mar 2013

References

  • European Parliament, Regulation (EC) No 1907/2006 of the European Parliament and of the Council of 18 December 2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) establishing a European Chemicals Agency, amending Directive 1999/45/EC and repealing Council Regulation (EEC) No 793/93 and Commission Regulation (EC) No 1488/94 as well as Council Directive 76/769/EEC and Commission Directives 91/155/EEC, 93/67/EEC, 93/105/EC and 2000/21/EC, Off. J. Eur. Union L396 (2006), pp. 1–849.
  • European Chemicals Agency (ECHA), Guidance on information requirements and chemical safety assessment. Chapter R.6. QSARs and grouping of chemicals, in Guidance for the Implementation of REACH, ECHA, Helsinki, 2008.
  • European Chemicals Agency (ECHA), Guidance on information requirements and chemical safety assessment. Chapter R.7a. Endpoint specific guidance, in Guidance for the Implementation of REACH, ECHA, Helsinki, 2008.
  • Livingstone , D.J. 2004 . “ Building QSAR models: A practical guide ” . In Predicting Chemical Toxicity and Fate , Edited by: Cronin , M.T.D. and Livingstone , D.J. 151 – 170 . Boca Raton , FL : CRC Press .
  • Walker , J.D. , Dearden , J.C. , Schultz , T.W. , Jaworska , J. and Comber , M.H.I. 2003 . “ QSARs for new practitioners ” . In Quantitative Structure–Activity Relationships for Pollution Prevention, Toxicity Screening, Risk Assessment, and Web Applications , Edited by: Walker , J.D. 3 – 18 . Pensacola , FL : SETAC Press .
  • Walker , J.D. , Jaworska , J. , Comber , M.H.I. , Schultz , T.W. and Dearden , J.C. 2003 . Guidelines for developing and using quantitative structure-activity relationships . Environ. Toxicol. Chem. , 22 : 1653 – 1665 .
  • Dearden , J.C. , Cronin , M.T.D. and Kaiser , K.L.E. 2009 . How not to develop a quantitative structure-activity or structure-property relationship (QSAR/QSPR) . SAR QSAR Environ. Res. , 20 : 241 – 266 .
  • OECD QSAR Toolbox; software available at http://www.qsartoolbox.org.
  • Gasteiger , J. and Engel , T. 2003 . Chemoinformatics – A Textbook , Weinheim : Wiley .
  • Witten , I.H. and Frank , E. 2005 . Data Mining: Practical Machine Learning Tools and Techniques , San Francisco : Morgan Kaufmann Publishers .
  • Karelson , M. 2000 . Molecular Descriptors in QSAR/QSPR , New York : Wiley .
  • Todeschini , R. and Consonni , V. 2000 . Handbook of Molecular Descriptors , Weinheim : Wiley .
  • Katritzky , A.R. , Kuanar , M. , Slavov , S. , Hall , C.D. , Karelson , M. , Kahn , I and Dobche , D.A. 2010 . Quantitative correlation of physical and chemical properties with chemical structure: utility for prediction . Chem. Rev. , 110 : 5714 – 5789 .
  • Organisation for Economic Co-operation and Development (OECD) . 2004 . OECD Principles for the Validation, for Regulatory Purposes, of (Quantitative) Structure–Activity Relationship Models , Paris : OECD .
  • OECD Environment Directorate, Joint meeting of the Chemicals Committee and the Working Party on Chemicals, Pesticides and Biotechnology.
  • Gramatica , P. 2007 . Principles of QSAR models validation: internal and external . QSAR Comb. Sci. , 26 : 694 – 701 .
  • A. Golbraikh, M. Shen, Z.Y. Xiao, Y.D. Xiao, K.H. Lee, and A. Tropsha, Rational selection of training and test sets for the development of validated QSAR models, J. Comp.-Aided Mol. Des. 17 (2003), pp. 241–253.
  • Dearden , J.C. 1999 . “ The prediction of melting point ” . In Advances in Quantitative Structure- Property Relationships , Edited by: Charton , M. and Charton , B. Vol. 2 , 127 – 175 . Stamford , CT : JAI Press .
  • Horvath , A.L. 1992 . Molecular Design: Chemical Structure Generation from the Properties of Pure Organic Compounds , Amsterdam : Elsevier .
  • Reinhard , M. and Drefahl , A. 1999 . Estimating Physico-chemical Properties of Organic Compounds , New York : Wiley .
  • Dearden , J.C. 2003 . Quantitative structure-property relationships for prediction of boiling point, vapour pressure, and melting point . Environ. Toxicol. Chem. , 22 : 1696 – 1709 .
  • Tesconi , M. and Yalkowsky , S.H. 2000 . “ Melting point ” . In Handbook of Property Estimation Methods for Chemicals: Environmental and Health Sciences , Edited by: Boethling , R.S. and Mackay , D. 3 – 27 . Boca Raton , FL : Lewis .
  • E.J. Mills, On melting point and boiling point as related to composition, Phil. Mag. (Series 5), 17 (1884), pp. 173–187.
  • Katritzky , A.R. , Maran , U. , Karelson , M. and Lobanov , V.S. 1997 . Prediction of melting points for the substituted benzenes . J. Chem. Inf. Comput. Sci. , 37 : 913 – 919 .
  • CODESSA; software available at http://www.semichem.com.
  • Zhao , L. and Yalkowsky , S.H. 1999 . A combined group contribution and molecular geometry approach for predicting melting points of aliphatic compounds . Ind. Eng. Chem. Res. , 38 : 3581 – 3584 .
  • Simamora , P. and Yalkowsky , S.H. 1994 . Group contribution methods for predicting the melting points and boiling points of aromatic compounds . Ind. Eng. Chem. Res. , 33 : 1405 – 1409 .
  • Constantinou , L. and Gani , R. 1994 . New group contribution method for estimating properties of pure compounds . Amer. Inst. Chem. Eng. J. , 40 : 1697 – 1710 .
  • Marrero , J. and Gani , R. 2001 . Group-contribution based estimation of pure component properties . Fluid Phase Equil. , 183–184 : 183 – 208 .
  • Tu , C.-H. and Wu , Y.-S. 1996 . Group-contribution estimation of normal freezing points of organic compounds . J. Chin. Inst. Chem. Eng. , 27 : 323 – 328 .
  • Todeschini , R. , Vighi , M. , Finizio , A. and Gramatica , P. 1997 . 3-D modelling and prediction by WHIM descriptors. Part 8. Toxicity and physico-chemical properties of environmental priority chemicals by 2D-TI and 3D-WHIM descriptors . SAR QSAR Environ. Res. , 7 : 173 – 193 .
  • Bergström , C.A.S. , Norinder , U. , Luthman , K. and Artursson , P. 2003 . Molecular descriptors influencing melting point and their role in classification of solid drugs . J. Chem. Inf. Comput. Sci. , 43 : 1177 – 1185 .
  • Modarresi , H. , Dearden , J.C. and Modarress , H. 2006 . QSPR correlation of melting point for drug compounds based on different sources of molecular descriptors . J. Chem. Inf. Model. , 46 : 930 – 936 .
  • Godavarthy , S.S. , Robinson , R.L. and Gasem , K.A.M. 2006 . An improved structure-property model for predicting melting-point temperatures . Ind. Eng. Chem. Res. , 45 : 5117 – 5126 .
  • Papa , E. , Kovarich , S. and Gramatica , P. 2009 . Development, validation and inspection of the applicability domain of QSPR models for physicochemical properties of polybrominated diphenyl ethers . QSAR Comb. Sci. , 28 : 790 – 796 .
  • Lyman , W.J. 2000 . “ Boiling point ” . In Handbook of Property Estimation Methods for Chemicals: Environmental and Health Sciences , Edited by: Boethling , R.S. and Mackay , D. 29 – 51 . Boca Raton , FL : Lewis .
  • W.H. Banks, Considerations of a vapour pressure-temperature equation, and their relation to Burnop’s boiling point function, J. Chem. Soc. (1939), pp. 826–829.
  • C.E. Rechsteiner, Boiling point, in Handbook of Chemical Property Estimation Methods: Environmental Behavior of Organic Compounds, W.J. Lyman, W.F. Reehl, and D.H. Rosenblatt, eds., American Chemical Society, Washington DC, 1990, pp. 12.1–12.55.
  • Katritzky , A.R. , Mu , L. , Lobanov , V.S. and Karelson , M. 1996 . Correlation of boiling points with molecular structure. 1. A training set of 298 diverse organics and a test set of 9 simple organics . J. Phys. Chem. , 100 : 10400 – 10407 .
  • Sola , D. , Ferri , A. , Banchero , M. , Manna , L. and Sicardi , S. 2008 . QSPR prediction of N-boiling point and critical properties of organic compounds and comparison with a group-contribution method . Fluid Phase Equil. , 263 : 33 – 42 .
  • Basak , S.C. and Mills , D.R. 2001 . Use of mathematical structural invariants in the development of QSPR models . Commun. Math. Comput. Chem , 44 : 15 – 30 .
  • Hall , L.H. and Story , C.T. 1996 . Boiling point and critical temperature of a heterogeneous data set. QSAR with atom type electrotopological state indices using artificial neural networks . J. Chem. Inf. Comput. Sci. , 36 : 1004 – 1014 .
  • Kier , L.B. and Hall , L.H. 1999 . Molecular Structure Description: The Electrotopological State , New York : Academic Press .
  • Joback , K.G. and Reid , R.C. 1987 . Estimation of pure-component properties from group-contributions . Chem. Eng. Commun. , 57 : 233 – 243 .
  • Stein , S.E. and Brown , R.L. 1994 . Estimation of normal boiling points from group contributions . J. Chem. Inf. Comput. Sci. , 34 : 581 – 587 .
  • Labute , P. 2000 . A widely applicable set of descriptors . J. Mol. Graph. Model. , 18 : 464 – 477 .
  • JRC QSAR Database; available at http://ihcp.jrc.ec.europa.eu/our_databases/jrc-qsar-database
  • L.H. Nelken, Densities of vapors, liquids and solids, in Handbook of Chemical Property Estimation Methods: Environmental Behavior of Organic Compounds, W.J. Lyman, W.F. Reehl, and D.H. Rosenblatt, eds., American Chemical Society, Washington DC, 1990, pp. 19.1–19.24.
  • Grigoras , S. 1990 . A structural approach to calculate physical properties of pure organic substances: The critical temperature, critical volume and related properties . J. Comput. Chem. , 11 : 493 – 510 .
  • Kier , L.B. and Hall , L.H. 1976 . Molecular Connectivity in Chemistry and Drug Research , San Diego , CA : Academic Press .
  • Girolami , G.S. 1994 . A simple ‘Back of the envelope’ method for estimating the densities and molecular volumes of liquids and solids . J. Chem. Educ. , 71 : 962 – 964 .
  • Abraham , M.H. and McGowan , J.C. 1987 . The use of characteristic volumes to measure cavity terms in reversed phase liquid chromatography . Chromatographia , 23 : 243 – 246 .
  • Grain , C.F. 1982 . Handbook of Chemical Property Estimation Methods , New York : McGraw-Hill .
  • Organisation for Economic Co-operation and Development (OECD), OECD Guideline for the Testing of Chemicals No. 104. Vapour pressure, OECD, Paris, 1995.
  • Organisation for Economic Co-operation and Development (OECD), OECD Environment Monograph No. 67. Application of structure–activity relationships to the estimation of properties important in exposure assessment, OECD, Paris, 1993.
  • Mishra , D.S. and Yalkowsky , S.H. 1991 . Estimation of vapor pressure of some organic compounds . Ind. Eng. Chem. Res. , 30 : 1609 – 1612 .
  • Mackay , D. , Bobra , A. , Chan , W. and Shiu , W.Y. 1982 . Vapor pressure correlation for low-volatility organic chemicals . Environ. Sci. Technol. , 16 : 645 – 649 .
  • C.F. Grain, Vapor pressure, in Handbook of Chemical Property Estimation Methods: Environmental Behavior of Organic Compounds, W.J. Lyman, W.F. Reehl, and D.H. Rosenblatt, eds., American Chemical Society, Washington DC, 1990, pp. 14.11–14.20.
  • Schwarzenbach , R.P. , Gschwend , P.M. and Imboden , D.M. 1993 . Environmental Organic Chemistry , New York : Wiley .
  • Delle Site , A. 1996 . The vapor pressure of environmentally significant organic chemicals: a review of methods and data at ambient temperature . J. Phys. Chem. Ref. Data , 26 : 157 – 193 .
  • Sage , M.L. and Sage , G.W. 2000 . “ Vapor pressure ” . In Handbook of Property Estimation Methods for Chemicals: Environmental and Health Sciences , Edited by: Boethling , R.S. and Mackay , D. 53 – 65 . Boca Raton , FL : Lewis .
  • Katritzky , A.R. , Wang , Y. , Sild , S. , Tamm , T. and Karelson , M. 1998 . QSPR studies on vapor pressure, aqueous solubility, and the prediction of air-water partition coefficients . J. Chem. Inf. Comput. Sci. , 38 : 720 – 725 .
  • Liang , C.K. and Gallagher , D.A. 1998 . QSPR prediction of vapor pressure from solely theoretically-derived descriptors . J. Chem. Inf. Comput. Sci. , 38 : 321 – 324 .
  • Tu , C.-H. 1994 . Group-contribution method for the estimation of vapor pressures . Fluid Phase Equil. , 99 : 105 – 120 .
  • Goll , E.S. and Jurs , P.C. 1999 . Prediction of vapor pressures of hydrocarbons and halohydrocarbons from molecular structure with a computational neural network model . J. Chem. Inf. Comput. Sci. , 39 : 1081 – 1089 .
  • N.N. Andreev, S.E. Kuznetsov, and S.Y. Storozhenko, Prediction of vapour pressure and boiling points of aliphatic compounds, Mendeleev Commun. (1994), pp. 173–174.
  • Kühne , R. , Ebert , R.U. and Schüürmann , G. 1997 . Estimation of vapour pressures for hydrocarbons and halogenated hydrocarbons from chemical structure by a neural network . Chemosphere , 34 : 671 – 686 .
  • Yaffe , D. and Cohen, Y , Y. 2001 . Neural network-based temperature-dependent quantitative structure property relationships (QSPRs) for predicting vapor pressure of hydrocarbons . J. Chem. Inf. Comput. Sci. , 41 : 463 – 477 .
  • C.F. Grain, Surface tension, in Handbook of Chemical Property Estimation Methods: Environmental Behavior of Organic Compounds, W.J. Lyman, W.F. Reehl, and D.H. Rosenblatt, eds., American Chemical Society, Washington DC, 1990, pp. 20.1–20.16.
  • Macleod , D.B. 1923 . On a relation between surface tension and density . Trans. Faraday Soc. , 19 : 38 – 42 .
  • Sugden , S. 1924 . The influence of the orientation of surface molecules on the surface tension of pure liquids . J. Chem. Soc. , 125 : 1167 – 1189 .
  • Reid , R.C. , Prausnitz , J.M. and Sherwood , T.K. 1977 . The Properties of Gases and Liquids , New York : McGraw-Hill .
  • Yaws , C.L. , Yang , H.-C. and Pan , X. 1991 . 633 Organic chemicals: surface tension data . Chem. Eng. , 98 : 140 – 150 .
  • Stanton , D.T. and Jurs , P.C. 1992 . Computer-assisted study of the relationship between molecular structure and surface tension of organic compounds . J. Chem. Inf. Comput. Sci. , 32 : 109 – 115 .
  • Kauffman , G.W. and Jurs , P.C. 2001 . Prediction of surface tension, viscosity, and thermal conductivity for common organic solvents using quantitative structure-property relationships . J. Chem. Inf. Comput. Sci. , 41 : 408 – 418 .
  • Khajeh , A. and Modarress , H. 2011 . Quantitative structure-activity relationship for surface tension of some common alcohols . J. Chemom. , 25 : 333 – 339 .
  • Wang , J. , Du , H. , Liu , H. , Yao , X. , Hu , Z. and Fan , B. 2007 . Prediction of surface tension for common compounds using heuristic method and support vector machine . Talanta , 73 : 147 – 156 .
  • Yalkowsky , S.H. and Banerjee , S. 1992 . Aqueous Solubility: Methods of Estimation for Organic Compounds , New York : Marcel Dekker .
  • Lyman , W.J. 1990 . “ Solubility in water ” . In Handbook of Chemical Property Estimation Methods: Environmental Behavior of Organic Compounds , Edited by: Lyman , W.J. , Reehl , W.F. and Rosenblatt , D.H. 2.1 – 2.52 . Washington , DC : American Chemical Society .
  • European Centre for Ecotoxicology and Toxicology of Chemicals, QSARs in the Assessment of the Environmental Fate and Effects of Chemicals, ECETOC Technical Report No. 74, ECETOC, Brussels, 1998.
  • Mackay , D. 2000 . “ Solubility in water ” . In Handbook of Property Estimation Methods for Chemicals: Environmental and Health Sciences , Edited by: Boethling , R.S. and Mackay , D. 125 – 139 . Boca Raton , FL : Lewis .
  • Dearden , J.C. 2006 . In silico prediction of aqueous solubility . Expert Opin. Drug Discov. , 1 : 31 – 52 .
  • Livingstone , D.J. 2003 . Theoretical property predictions . Curr. Topics Med. Chem. , 3 : 1171 – 1192 .
  • Hansch , C. , Quinlan , J.E. and Lawrence , G.L. 1968 . The linear free-energy relationship between partition coefficients and aqueous solubility of liquids . J. Org. Chem. , 33 : 347 – 368 .
  • Sanghvi , T. , Jain , N. , Yang , G. and Yalkowsky , S.H. 2003 . Estimation of aqueous solubility by the general solubility equation (GSE) the easy way . QSAR Comb. Sci. , 22 : 258 – 262 .
  • Myrdal , P. , Manka , A.M. and Yalkowsky , S.H. 1995 . AQUAFAC 3: aqueous functional group activity coefficients: application to the estimation of aqueous solubility . Chemosphere , 30 : 1619 – 1637 .
  • Abraham , M.H. and Le , J. 1999 . The correlation and prediction of the solubility of compounds in water using an amended solvation energy relationship . J. Pharm. Sci. , 88 : 86 – 880 .
  • Absolv; software available at http://www.acdlabs.com.
  • Raevsky , O.A. , Raevskaja , O.E. and Schaper , K.-J. 2004 . Analysis of water solubility data on the basis of HYBOT descriptors. Part 3. Solubility of solid neutral chemicals and drugs . QSAR Comb. Sci. , 23 : 327 – 343 .
  • Klopman , G. and Zhu , H. 2001 . Estimation of the aqueous solubility of organic molecules by the group contribution approach . J. Chem. Inf. Comput. Sci. , 41 : 439 – 445 .
  • D.W. Hawker and D.W. Connell, Octanol-water partition coefficients of polychlorinated biphenyl congeners. Environ. Sci. Technol. 22 (1988), pp. 382–387.
  • J. Huuskonen, M. Salo, and J. Taskinen J, Neural network modelling for estimation of the aqueous solubility of structurally related drugs, J. Pharm. Sci. 86 (1997), pp. 450–454.
  • Liu , F. , Cao , C. and Cheng , B. 2011 . A quantitative structure-property relationship (QSPR) study of aliphatic alcohols by the method of dividing the molecular structure into substructure . Int. J. Mol. Sci. , 12 : 2448 – 2462 .
  • Dearden , J.C. , Netzeva , T.I. and Bibby , R. 2003 . “ A comparison of commercially available software for the prediction of aqueous solubility ” . In Designing Drugs and Crop Protectants: Processes, Problems and Solutions , Edited by: Ford , M. , Livingstone , D. , Dearden , J. and van de Waterbeemd , H. 169 – 171 . Oxford : Blackwell .
  • J.C. Dearden (2007), unpublished work.
  • Abshear , T. , Banik , G.M. , D’Souza , M.L. , Nedwed , K. and Peng , C. 2006 . A model validation and consensus building environment . SAR QSAR Environ. Res. , 17 : 311 – 321 .
  • W.J. Lyman, Octanol/water partition coefficient, in Handbook of Chemical Property Estimation Methods: Environmental Behavior of Organic Compounds, W.J. Lyman, W.F. Reehl, and D.H. Rosenblatt, eds., American Chemical Society, Washington DC, 1990, pp. 1.1–1.54.
  • Nendza , M. 1998 . Structure-Activity Relationships in Environmental Sciences , London : Chapman & Hall .
  • Leo , A. 2000 . “ Octanol/water partition coefficients ” . In Handbook of Property Estimation Methods for Chemicals: Environmental and Health Sciences , Edited by: Boethling , R.S. and Mackay , D. 89 – 114 . Boca Raton , FL : Lewis .
  • Klopman , G. and Zhu , H. 2005 . Recent methodologies for the estimation of n-octanol/water partition coefficients and their use in the prediction of membrane transport properties of drugs . Mini-Rev. Med. Chem. , 5 : 127 – 133 .
  • Bodor , N. , Gabanyi , N.Z. and Wong , C.-K. 1989 . A new method for the estimation of partition coefficient . J. Am. Chem. Soc. , 111 : 3783 – 3786 .
  • Ghose , A.K. , Pritchett , A. and Crippen , G.M. 1988 . Atomic physico-chemical parameters for three dimensional structure directed quantitative structure-activity relationships: III. Modelling hydrophobic interactions . J. Comput. Chem. , 9 : 80 – 90 .
  • Klopman , G. and Wang , S. 1991 . A computer automated structure evaluation (CASE) approach to calculation of partition coefficient . J. Comput. Chem. , 12 : 1025 – 1032 .
  • Liu , R. and Zhou , D. 2008 . Using molecular fingerprint as descriptors in the QSPR study of lipophilicity . J. Chem. Inf. Model. , 48 : 542 – 549 .
  • Chen , H.-F. 2009 . In silico log P prediction for a large data set with support vector machines, radial basis neural networks and multiple linear regression . Chem. Biol. Drug Des. , 74 : 142 – 147 .
  • Tetko , I.V. , Tanchuk , V.Yu. and Villa , A.E.P. 2001 . Prediction of n-octanol/water partition coefficients from PHYSPROP database using artificial neural networks and E-state indices . J. Chem. Inf. Comput. Sci. , 41 : 1407 – 1421 .
  • Abraham , M.H. , Chadha , H.S. and Mitchell , R.C. 1994 . Hydrogen bonding. 32. An analysis of water-octanol and water-cyclohexane partitioning and the log P parameter of Seiler . J. Pharm. Sci. , 83 : 1085 – 1100 .
  • Dearden , J.C. , Netzeva , T.I. and Bibby , R. 2003 . “ A comparison of commercially available software for the prediction of partition coefficient ” . In Designing Drugs and Crop Protectants: Processes, Problems and Solutions , Edited by: Ford , M. , Livingstone , D. , Dearden , J. and van de Waterbeemd , H. 168 – 169 . Oxford : Blackwell .
  • Mannhold , R. , Poda , G.I. , Ostermann , C. and Tetko , I.V. 2009 . Calculation of molecular lipophilicity: state-of-the-art and comparison of log P methods on more than 96,000 compounds . J. Pharm. Sci. , 98 : 861 – 893 .
  • Dearden , J.C. and Bresnen , G.M. 2005 . Thermodynamics of water-octanol and water-cyclohexane partitioning of some aromatic compounds . Int. J. Mol. Sci. , 6 : 119 – 129 .
  • Dearden , J.C. 1990 . “ Molecular structure and drug transport ” . In Comprehensive Medicinal Chemistry , Edited by: Ramsden , C.A. vol. 4 , 375 – 411 . Oxford : Pergamon Press .
  • Yalkowsky , S.H. , Valvani , S.C. and Roseman , T.J. 1983 . Solubility and partitioning. 6. Octanol solubility and octanol-water partition coefficients . J. Pharm. Sci. , 72 : 866 – 870 .
  • Varnek , A. , Fourches , D. , Solov’ev , V.P. , Baulin , V.E. , Touranov , A.N. , Karandashev , V.K. , Fara , D. and Katritzky , A.R. 2004 . ‘In silico’ design of new uranyl extractants based on phosphoryl-containing podands: QSPR studies, generation and screening of virtual combinatorial library, and experimental tests . J. Chem. Inf. Comput. Sci. , 44 : 1365 – 1382 .
  • Ellis , W.H. 1976 . Solvent flash points – expected and unexpected . J. Coatings Technol. , 48 : 44 – 57 .
  • Gramatica , P. , Battaini , F. and Papa , E. 2004 . QSAR prediction of physico-chemical properties of esters . Fresenius Environ. Bull. , 13 : 1258 – 1262 .
  • Hshieh , F. 1997 . Correlation of closed-cup flash points with normal boiling points for silicone and general organic compounds . Fire Mater. , 21 : 277 – 282 .
  • Katritzky , A.R. , Petrukhin , R. , Jain , R. and Karelson , M. 2001 . QSPR analysis of flash points . J. Chem. Inf. Comput. Sci. , 41 : 1521 – 1530 .
  • Patil , G.S. 1988 . Estimation of flash point . Fire Mater. , 12 : 127 – 131 .
  • Satyanarayana , K. and Rao , P.G. 1992 . Improved equation to estimate flash points of organic compounds . J. Haz. Mater. , 32 : 81 – 85 .
  • Suzuki , T. , Ohtaguchi , K. and Koide , K. 1991 . A method for estimating flash points of organic compounds from molecular structures . J. Chem. Eng. Jap. , 24 : 258 – 261 .
  • Tetteh , J. , Suzuki , T. , Metcalfe , E. and Howells , S. 1999 . Quantitative structure-property relationships for the estimation of boiling point and flash point using a radial basis function neural network . J. Chem. Inf. Comput. Sci. , 39 : 491 – 507 .
  • Zhokhova , N.I. , Baskin , I.I. , Palyulin , V.A. , Zefirov , A.N. and Zefirov , N.S. 2003 . Fragmental descriptors in QSPR: flash point calculations . Russ. Chem. Bull. Intl. Ed. , 52 : 1885 – 1892 .
  • J.H. Hagiopan, Flash points of pure substances, in Handbook of Chemical Property Estimation Methods: Environmental Behavior of Organic Compounds, W.J. Lyman, W.F. Reehl, and D.H. Rosenblatt, eds., American Chemical Society, Washington DC, 1990, pp. 18.1–18.14.
  • Vidal , M. , Rogers , W.J. , Holste , J.C. and Mannan , M.S. 2004 . A review of estimation methods for flash points and flammability limits . Process Saf. Prog. , 23 : 47 – 55 .
  • Katritzky , A.R. , Stpyanova-Slavova , I.B. , Dobchev , D.A. and Karelson , M. 2007 . QSPR modeling of flash points: An update . J. Mol. Graph. Model. , 26 : 529 – 536 .
  • Pan , Y. , Jiang , J. , Cao , H. and Zhao , J. 2008 . Quantitative structure-property relationship studies for predicting flash points of organic compounds using support vector machines . QSAR Comb. Sci. , 27 : 1013 – 1019 .
  • Pan , Y. , Jiang , J. , Ding , X. , Wang , R. and Jiang , J. 2010 . Prediction of flammability characteristics of pure hydrocarbons from molecular structures . Amer. Inst. Chem. Eng. J. , 56 : 690 – 701 .
  • Carroll , F.A. , Lin , C.-Y. and Quina , F.H. 2011 . Simple method to evaluate and to predict flash points of organic compounds . Ind. Eng. Chem. Res. , 50 : 4796 – 4800 .
  • F. Gharagheizi, A. Elsamimanesh, A.H. Mohammadi, and D. Richon D. Empirical method for representing the flash-point temperature of pure compounds, Ind. Eng. Chem. Res. 50 (2011), pp. 5877–5880.
  • McGovern , J.L. 1992 . Four methods for predicting the flash point of alkyd paints containing VM&P naphtha and mineral spirits – Part I . J. Coatings Technol. , 64 : 33 – 38 .
  • McGovern , J.L. 1992 . A method for estimating the flash points of coatings containing mixtures of oxygenated and hydrocarbon solvents and petroleum distillates – Part II . J. Coatings Technol. , 64 : 39 – 44 .
  • Wickey , R.O. and Chittenden , D.H. 1963 . Flash points of blends correlated . Hydrocarb. Process. Pet. Refin. , 42 : 157 – 158 .
  • Gharagheizi , F. 2008 . Quantitative structure-property relationship for prediction of the lower flammability limit of pure compounds . Energy Fuels , 22 : 3037 – 3039 .
  • Gharagheizi , F. 2009 . A new group contribution-based model for estimation of lower flammability limit of pure compounds . J. Haz. Mater. , 170 : 595 – 604 .
  • Pan , Y. , Jiang , J. , Wang , R. , Cao , H. and Cui , Y. 2009 . A novel QSPR model for prediction of lower flammability limits of organic compounds based on support vector machine . J. Haz. Mater. , 168 : 962 – 969 .
  • Gharagheizi , F. 2009 . New neural network group contribution model for estimation of lower flammability limit temperature of pure compounds . Ind. Eng. Chem. Res. , 48 : 7406 – 7416 .
  • Gharagheizi , F. 2009 . Prediction of upper flammability limit percent of pure compounds from their molecular structures . J. Haz. Mater. , 167 : 507 – 510 .
  • Gharagheizi , F. 2010 . Chemical structure-based model for estimation of the upper flammability limit of pure compounds . Energy Fuels, , 24 : 3867 – 3871 .
  • Pan , Y. , Jiang , J. , Wang , R. , Cao , H. and Cui , Y. 2009 . Prediction of the upper flammability limits of organic compounds from molecular structures . Ind. Eng. Chem. Res. , 48 : 5064 – 5069 .
  • CHETAH; software available at http://www.astm.org/BOOKSTORE/PUBS/DS51F.htm.
  • Cho , S.G. , No , K.T. , Goh , E.M. , Shin , J.H. , Joo , Y.D. and Seong , S. 2005 . Optimization of neural networks architecture for impact sensitivity of energetic molecules . Bull. Korean Chem. Soc. , 26 : 399 – 407 .
  • Keshavarz , M.H. 2010 . Simple relationship for predicting impact sensitivity of nitroaromatics, nitramines, and nitroaliphatics . Propellants, Explos. Pyrotech. , 35 : 175 – 181 .
  • Morrill , J.A. and Byrd , E.F.C. 2008 . Development of quantitative structure-property relationships and design of energetic materials . J. Mol. Graph. Model. , 27 : 349 – 355 .
  • Wang , R. , Jiang , J. , Pan , Y. , Cao , H. and Cui , Y. 2009 . Prediction of impact sensitivity of nitro energetic compounds by neural network based on electrotopological-state indices . J. Haz. Mater. , 166 : 155 – 186 .
  • Prana , V. , Fayet , G. , Rotureau , P. and Adamo , C. 2012 . Development of validated QSPR models for impact sensitivity of nitroaliphatic compounds . J. Haz. Mater. , 235–236 : 169 – 177 .
  • Fayet , G. , Prana , V. , Rotureau , P. and Adamo , C. 2012 . Global and local quantitative structure-property relationship models to predict the impact sensitivity of nitro compounds . Process Saf. Prog. , 31 : 291 – 303 .
  • Benson , S.W. 1976 . Thermochemical Kinetics , 2nd ed. , New York : Wiley .
  • Saraf , S.R. , Rogers , W.J. and Mannan , M.S. 2003 . Prediction of reactive hazards based on molecular structure . J. Haz. Mater. , 98 : 15 – 29 .
  • Fayet , G. , Rotureau , P. , Joubert , L. and Adamo , C. 2011 . Development of a QSPR model for predicting thermal stabilities of nitroaromatic compounds taking into account their decomposition mechanisms . J. Mol. Model. , 17 : 2443 – 2453 .
  • Fayet , G. , Del Rio , A. , Rotureau , P. , Joubert , L. and Adamo , C. 2011 . Predicting the thermal stability of nitroaromatic compounds using chemoinformatic tools . Mol. Inf. , 30 : 623 – 634 .
  • Taskinen , J. and Yliruusi , J. 2003 . Prediction of physico-chemical properties based on neural network modelling . Adv. Drug Delivery Rev. , 55 : 1163 – 1183 .
  • Tetteh , J. , Metcalfe , E. and Howells , S. 1996 . Optimisation of radial basis and backpropagation neural networks for modelling auto-ignition temperature by quantitative structure-property relationships . Chemometr. Intell. Lab. Syst. , 32 : 177 – 191 .
  • Tetteh , J. , Howells , S. , Metcalfe , E. and Suzuki , T. 1998 . Optimisation of radial basis function neural networks using biharmonic spline interpolation . Chemometr. Intell. Lab. Syst. , 41 : 17 – 29 .
  • Mitchell , B.E. and Jurs , P.C. 1997 . Prediction of autoignition temperatures of organic compounds from molecular structure . J. Chem. Inf. Comput. Sci. , 37 : 538 – 547 .
  • Pan , Y. , Jiang , J. , Wang , R. , Cao , H. and Zhao , J. 2008 . Prediction of auto-ignition temperatures of hydrocarbons by neural network based on atom-type electrotopological-state indices . J. Haz. Mater. , 157 : 510 – 517 .
  • Pan , Y. , Jiang , J. , Wang , R. and Cao , H. 2008 . Advantages of support vector machine in QSPR studies for predicting auto-ignition temperatures of organic compounds . Chemometr. Intell. Lab. Syst. , 92 : 169 – 178 .
  • Hukkerikar , A.S. , Sarup , B. , Ten Kate , A. , Abildskov , J. , Sin , G. and Gani , R. 2012 . Group-contribution+ (GC+) based estimation of properties of pure components: improved property estimation and uncertainty analysis . Fluid Phase Equil. , 321 : 25 – 43 .
  • W.J. Lyman, Adsorption coefficient for soils and sediments, in Handbook of Chemical Property Estimation Methods: Environmental Behavior of Organic Compounds, W.J. Lyman, W.F. Reehl, and D.H. Rosenblatt, eds., American Chemical Society, Washington DC, 1990, pp. 4.1–4.33.
  • Doucette , W.J. 2000 . “ Soil and sediment sorption coefficients ” . In Handbook of Property Estimation Methods for Chemicals: Environmental and Health Sciences , Edited by: Boethling , R.S. and Mackay , D. 141 – 188 . Boca Raton , FL : Lewis .
  • Doucette , W.J. 2003 . Quantitative structure-activity relationships for predicting soil/sediment sorption coefficients for organic chemicals . Environ. Toxicol. Chem. , 22 : 1771 – 1788 .
  • Dearden , J.C. 2004 . “ QSAR modelling of soil sorption ” . In Predicting Chemical Toxicity and Fate , Edited by: Cronin , M.T.D. and Livingstone , D.J. 357 – 371 . Boca Raton , FL : CRC Press .
  • Sabljić , A. , Güsten , H. , Verhaar , H. and Hermens , J. 1995 . QSAR modelling of soil sorption. Improvements and systematics of log Koc vs. log Kow correlations . Chemosphere , 31 : 4489 – 4514 .
  • European Chemicals Bureau, Technical Guidance Document on Risk Assessment. Part III, European Commission Joint Research Centre, Ispra, Italy, 2003, Chapter 4, Section 4.3 (pp. 24–27).
  • Gerstl , Z. 1990 . Estimation of organic chemical sorption by soils . J. Contam. Hydrol. , 6 : 357 – 375 .
  • Briggs , G.G. 1981 . Theoretical and experimental relationships between soil adsorption, octanol-water partition coefficients, water solubilities, bioconcentration factors and the parachor . J. Agric. Food Chem. , 29 : 1050 – 1059 .
  • Poole , S.K. and Poole , C.F. 1999 . Chromatographic models for the sorption of neutral organic compounds by soil from air and water . J. Chromatogr. A , 845 : 381 – 400 .
  • Tao , S. , Piao , H. , Dawson , R. , Lu , X. and Hu , H. 1999 . Estimation of the organic carbon normalised sorption coefficient (Koc) using the fragment constant method . Environ. Sci. Tech. , 33 : 2719 – 2725 .
  • Lu , C. , Wang , Y. , Yin , C. , Guo , W. and Hu , X. 2006 . QSPR study on soil sorption coefficient for persistent organic pollutants . Chemosphere , 63 : 1384 – 1391 .
  • Gramatica , P. , Giani , E. and Papa , E. 2007 . Statistical external validation and consensus modeling: a QSPR case study for Koc prediction . J. Mol. Graph. Model. , 25 : 755 – 766 .
  • Bintein , S. and Devillers , J. 1994 . QSAR for organic chemical sorption in soils and sediments . Chemosphere , 28 : 1171 – 1188 .
  • J.C. Harris and M.J. Hayes, Acid dissociation constant, in Handbook of Chemical Property Estimation Methods: Environmental Behavior of Organic Compounds, W.J. Lyman, W.F. Reehl, and D.H. Rosenblatt, eds., American Chemical Society, Washington DC, 1990, pp. 6.1–6.28.
  • Klopman , G. and Fercu , D. 1994 . Application of the multiple computer automated structure evaluation methodology to a quantitative structure-activity relationship study of acidity . J. Comput. Chem. , 15 : 1041 – 1050 .
  • Klamt , A. , Eckert , F. , Diedenhofen , M. and Beck , M.E. 2003 . First principles calculations of aqueous pK(a) values for organic and inorganic acids using COSMO-RS reveal an inconsistency in the slope of the pK(a) scale . J. Phys. Chem. A , 107 : 9380 – 9386 .
  • J.C. Dearden, M.T.D. Cronin, and D.C. Lappin, A comparison of commercially available software for the prediction of pKa, J. Pharm. Pharmacol. 59 (2007), Suppl. 1, p. A-7.
  • Liao , C. and Nicklaus , M.C. 2009 . Comparison of nine programs predicting pKa values of pharmaceutical substances . J. Chem. Inf. Model. , 49 : 2801 – 2812 .
  • Meloun , M. and Bordovská , S. 2007 . Benchmarking and validating algorithms that estimate pKa values of drugs based on their molecular structure . Anal. Bioanal. Chem. , 389 : 1267 – 1281 .
  • Balogh , G.T. , Gyoergy , B. , Nagy , B. , Molnar , L. and Keseru , G.M. 2009 . Comparative evaluation of in silico pK(a) prediction tools on the Gold Standard data set . QSAR Comb. Sci. , 28 : 1148 – 1155 .
  • Manchester , J. , Walkup , G. , Rivin , O. and You , Z.P. 2010 . Evaluation of pKa estimation methods on 211 druglike compounds . J. Chem. Inf. Model. , 50 : 565 – 571 .
  • C.F. Grain, Liquid viscosity, in Handbook of Chemical Property Estimation Methods: Environmental Behavior of Organic Compounds, W.J. Lyman, W.F. Reehl, and D.H. Rosenblatt, eds., American Chemical Society, Washington DC, 1990, pp. 22.1–22.20.
  • van Velzen , D. , Lopes Cardozo , R. and Lagenkamp , H. 1972 . A liquid viscosity-temperature-chemical constitution relation for organic compounds . Ind. Eng. Chem. Fundam. , 11 : 20 – 25 .
  • Skubla , P. 1985 . Prediction of viscosity of organic liquids . Coll. Czech. Chem. Commun. , 50 : 1907 – 1916 .
  • Rajappan , R. , Shingade , P.D. , Natarajan , R. and Jayaraman , V.K. 2009 . Quantitative structure-property relationship (QSPR) prediction of liquid viscosities of pure organic compounds employing random forest regression . Ind. Eng. Chem. Res. , 48 : 9708 – 9712 .
  • Mackay , D. , Shiu , W.Y. and Ma , K.C. 2000 . “ Henry’s law constant ” . In Handbook of Property Estimation Methods for Chemicals: Environmental and Health Sciences , Edited by: Boethling , R.S. and Mackay , D. 69 – 87 . Boca Raton , FL : Lewis .
  • Dearden , J.C. and Schüürmann , G. 2003 . Quantitative structure-property relationships for predicting Henry’s law constant from molecular structure . Environ. Toxicol. Chem. , 22 : 1755 – 1770 .
  • Nirmalakhandan , N.N. and Speece , R.E. 1988 . QSAR model for predicting Henry’s law constant . Environ. Sci. Technol. , 22 : 1349 – 1357 .
  • Schüürmann , G. and Rothenbacher , C. 1992 . Evaluation of estimation methods for the air-water partition coefficient . Fresenius Environ. Bull. , 1 : 10 – 15 .
  • Dearden , J.C. , Cronin , M.T.D. , Ahmed , S.A. and Sharra , J.A. 2000 . “ QSPR prediction of Henry’s law constant: improved correlation with new parameters ” . In Molecular Modelling and Prediction of Bioactivity , Edited by: Gundertofte , K. and Jørgensen , F.S. 273 – 274 . New York : Kluwer Academic/Plenum Publishers .
  • Hine , J. and Mookerjee , P.K. 1975 . The intrinsic hydrophilic character of organic compounds. Correlations in terms of structural contributions . J. Org. Chem. , 40 : 292 – 298 .
  • Cabani , S. , Gianni , P. , Mollica , V. and Lepori , L. 1981 . Group contributions to the thermodynamic properties of non-ionic organic solutes in dilute aqueous solution . J. Solut. Chem. , 10 : 563 – 595 .
  • Meylan , W.M. and Howard , P.H. 1991 . Bond contribution method for estimating Henry’s law constants . Environ. Toxicol. Chem. , 10 : 1283 – 1293 .
  • EPI Suite; software available at http://www.epa.gov/oppt/exposure/pubs/episuitedl.htm.
  • Gharagheizi , F. , Abbasi , R. and Tirandazi , B. 2010 . Prediction of Henry’s law constant of organic compounds in water from a new group-contribution method . Ind. Eng. Chem. Res. , 49 : 10149 – 10152 .
  • Russell , C.J. , Dixon , S.L. and Jurs , P.C. 1992 . Computer-assisted study of the relationship between molecular structure and Henry’s law constant . Anal. Chem. , 64 : 1350 – 1355 .
  • Abraham , M.H. , Andonian-Haftvan , J. , Whiting , G.S. , Leo , A. and Taft , R.S. 1994 . Hydrogen bonding. Part 34. The factors that influence the solubility of gases and vapours in water at 298 K, and a new method for its determination . J. Chem. Soc. Perkin Trans. , 2 : 1777 – 1791 .
  • Katritzky , A.R. , Mu , L. and Karelson , M. 1996 . A QSPR study of the solubility of gases and vapors in water . J. Chem. Inf. Comput. Sci. , 36 : 1162 – 1168 .
  • Modarresi , H. , Modarress , H. and Dearden , J.C. 2007 . QSPR model of Henry’s law constant for a diverse set of organic chemicals based on genetic algorithm-radial basis function network approach . Chemosphere , 66 : 2067 – 2076 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.