274
Views
22
CrossRef citations to date
0
Altmetric
Articles

Predicting hexadecane–air equilibrium partition coefficients (L) using a group contribution approach constructed from high quality data

Pages 51-71 | Received 11 Jun 2013, Accepted 24 Jul 2013, Published online: 29 Nov 2013

References

  • M.H. Abraham, Scales of solute hydrogen-bonding – Their construction and application to physicochemical and biochemcial processes, Chem. Soc. Rev. 22 (1993), pp. 73–83.
  • K.U. Goss, Predicting the equilibrium partitioning of organic compounds using just one linear solvation energy relationship (LSER), Fluid Phase Equilibr. 233 (2005), pp. 19–22.
  • T.N. Brown and F. Wania, Development and exploration of an organic contaminant fate model using poly-parameter linear free energy relationships, Environ. Sci. Technol. 43 (2009), pp. 6676–6683.
  • A. Stenzel, S. Endo, and K.U. Goss, Measurements and predictions of hexadecane/air partition coefficients for 387 environmentally relevant compounds, J. Chromatogr. A 1220 (2012), pp. 132–142.
  • K.U. Goss, H.P.H. Arp, G. Bronner, and C. Niederer, Nonadditive effects in the partitioning behavior of various aliphatic and aromatic molecules, Environ. Toxicol. Chem. 28 (2009), pp. 52–60.
  • J.A. Platts, D. Butina, M.H. Abraham, and A. Hersey, Estimation of molecular linear free energy relation descriptors using a group contribution approach, J. Chem. Inf. Comp. Sci. 39 (1999), pp. 835–845.
  • N. Ulrich, G. Schuurmann and W. Brack, Linear solvation energy relationships as classifiers in non-target analysis – A capillary liquid chromatography approach, J. Chromatogr. A 1218 (2011), pp. 8192–8196.
  • N. Ulrich, J. Muhlenberg, H. Retzbach, G. Schuurmann, and W. Brack, Linear solvation energy relationships as classifiers in non-target analysis – A gas chromatographic approach, J. Chromatogr. A 1264 (2012), pp. 95–103.
  • M.H. Abraham, P.L. Grellier, and R.A. McGill, Determination of olive oil–gas and hexadecane–gas partition coefficients, and calculation of the corresponding olive oil–water and hexadecane–water partition coefficients, J. Chem. Soc. Perkin Trans. 2 (1987), p. 797.
  • G. Bronner, K. Fenner, and K.U. Goss, Hexadecane/air partitioning coefficients of multifunctional compounds: Experimental data and modeling, Fluid Phase Equilibr. 299 (2010), pp. 207–215.
  • C.F. Poole, S.N. Atapattu, S.K. Poole, and A.K. Bell, Determination of solute descriptors by chromatographic methods, Anal. Chim. Acta 652 (2009), pp. 32–53.
  • F. Mutelet and M. Rogalski, Experimental determination and prediction of the gas–liquid n-hexadecane partition coefficients, J. Chromatogr. A 923 (2001), pp. 153–163.
  • P. Havelec and J.G.K. Sevcik, Concept of additivity for a nonpolar solute–solvent criterion log L(16) – Nonaromatic compounds, J. Chromatogr. A 677 (1994), pp. 319–329.
  • P. Havelec and J.G.K. Sevcik, Extended additivity model of parameter log (L(16)), J. Phys. Chem. Ref. Data 25 (1996), pp. 1483–1493.
  • ABSOLV module in ADME Boxes. Advanced Chemistry Development, Inc., Toronto.
  • S.H. Hilal, S.W. Karickhoff, and L.A. Carreira, Prediction of the solubility, activity coefficient and liquid/liquid partition coefficient of organic compounds, QSAR Comb. Sci. 23 (2004), pp. 709–720.
  • A. Klamt, COSMO–RS: From quantum chemistry to fluid phase thermodynamics and drug design, Elsevier ScienceAmsterdam, Netherlands, 2005.
  • T.N. Brown and F. Wania, Screening chemicals for the potential to be persistent organic pollutants: A case study of Arctic contaminants, Environ. Sci. Technol. 42 (2008), pp. 5202–5209.
  • P.H. Howard and D.C.G. Muir, Identifying new persistent and bioaccumulative organics among chemicals in commerce, Environ. Sci. Technol. 44 (2010), pp. 2277–2285.
  • J.A. Arnot, T.N. Brown, F. Wania, K. Breivik, and M.S. McLachlan, Prioritizing chemicals and data requirements for screening-level exposure and risk assessment, Environ. Health Perspect. 120 (2012), pp. 1565–1570.
  • S. Endo, T.N. Brown and K.-U. Goss, General model for estimating partition coefficients to organisms and their tissues using the biological compositions and polyparameter linear free energy relationships, Environ. Sci. Technol. 47, (2013), 6630–6639.
  • E. Undeman, G. Czub, and M.S. McLachlan, Modeling bioaccumulation in humans using poly-parameter linear free energy relationships (PPLFERS), Sci. Total Environ. 409 (2011), pp. 1726–1731.
  • X.M. Zhang, T.N. Brown, F. Wania, E.S. Heimstad, and K.U. Goss, Assessment of chemical screening outcomes based on different partitioning property estimation methods, Environ. Int. 36 (2010), pp. 514–520.
  • D. Weininger, SMILES a chemical language and information system. 1. Introduction to methodology and encoding rules, J. Chem. Inf. Comput. Sci. 28 (1987), pp. 31–36.
  • U.S. EPA, Exposure assessment tools and models, Estimation Program Interface (EPI) Suite. U.S. Environmental Protection Agency, Exposure Assessment Branch, Washington DC.
  • T.N. Brown, J.A. Arnot, and F. Wania, Iterative fragment selection: A group contribution approach to predicting fish biotransformation half-lives, Environ. Sci. Technol. 46 (2012), pp. 8253–8260.
  • The Open Babel Package. http://openbabel.org; software available at http://openbabel.org.
  • N. O’Boyle, M. Banck, C. James, C. Morley, T. Vandermeersch, and G. Hutchison, Open Babel: An open chemical toolbox, J. Cheminform. 3 (2011), p. 33.
  • K.P. Burnham and D.R. Anderson, Multimodel inference: Understanding AIC and BIC in model selection, Sociol. Method. Res. 33 (2004), pp. 261–304.
  • J.C. McGowan, The estimation of solubility parameters and related properties of liquids, J. Chem. Tech. Biotech. A 34 (1984), pp. 38–42.
  • T.I. Netzeva, A.P. Worth, T. Aldenberg, R. Benigni, M.T.D. Cronin, P. Gramatica, J.S. Jaworska, S. Kahn, G. Klopman, C.A. Marchant, G. Myatt, N. Nikolova-Jeliazkova, G.Y. Patlewicz, R. Perkins, D. Roberts, T. Schultz, D.W. Stanton, J.J. van de Sandt, W. Tong, G. Veith, and C. Yang, Current status of methods for defining the applicability domain of (quantitative) structure–activity relationships – The report and recommendations of ECVAM Workshop 52, Atla-Altern. Lab. Anim. 33 (2005), pp. 155–173.
  • L. Eriksson, J. Jaworska, A.P. Worth, M.T.D. Cronin, R.M. McDowell, and P. Gramatica, Methods for reliability and uncertainty assessment and for applicability evaluations of classification- and regression-based QSARs, Environ. Health Perspect. 111 (2003), pp. 1361–1375.
  • OECD, Guidance document on the validation of (quantitative) structure–activity relationships [(Q)SAR] models, Organisation for Economic Co-operation and Development (OECD), Environment Directorate, Paris, 2007.
  • P. Gramatica, Principles of QSAR models validation: Internal and external, QSAR Comb. Sci. 26 (2007), pp. 694–701.
  • P. Willett, J.M. Barnard, and G.M. Downs, Chemical similarity searching, J. Chem. Inf. Comp. Sci. 38 (1998), pp. 983–996.
  • ACD/Absolv, Advanced Chemistry Development Inc., Toronto, 2013.
  • G. Schuurmann, R.U. Ebert, and R. Kuehne, Prediction of physicochemical properties of organic compounds from 2D molecular structure – Fragment methods vs, LFER models, Chimia 60 (2006), pp. 691–698.
  • P. Gramatica, S. Cassani, P.P. Roy, S. Kovarich, C.W. Yap, and E. Papa, QSAR modeling is not “Push a button and find a correlation”: A case study of toxicity of (benzo-)triazoles on algae, Mol. Inf. 31 (2012), pp. 817–835.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.