135
Views
3
CrossRef citations to date
0
Altmetric
Articles

Chemometrics approach for the prediction of structure–activity relationship for membrane transporter bilitranslocaseFootnote

, , &
Pages 853-872 | Received 06 Jun 2014, Accepted 28 Jul 2014, Published online: 22 Oct 2014

References

  • D.B. Kell, P.D. Dobson, and S.G. Oliver, Pharmaceutical drug transport: The issues and the implications that it is essentially carrier-mediated only, Drug Discov. 16 (2011), pp. 704–714.
  • P.D. Dobson, K. Lanthaler, S.G. Oliver, and D.B. Kell, Implications of the dominant role of transporters in drug uptake by cells, Curr. Top. Med. Chem. 9 (2009), pp. 163–181.
  • D.B. Kell and P.D. Dobson, The cellular uptake of pharmaceutical drugs is mainly carrier-mediated and is thus an issue not so much of biophysics but of systems biology, Syst. Chem. (2008), pp. 149–168.
  • P.D. Dobson and D.B. Kell, Carrier-mediated cellular uptake of pharmaceutical drugs: An exception or the rule?, Nat. Rev. Drug Discov. 7 (2008), pp. 205–220.
  • N. Mizuno, T. Niwa, Y. Yotsumoto, and Y. Sugiyama, Impact of drug transporter studies on drug discovery and development, Pharm. Rev. 55 (2003), pp. 425–461.
  • S. Passamonti, U. Vrhovsek, and F. Mattivi, The interaction of anthocyanins with bilitranslocase, Biochem. Biophys. Res. Commun. 296 (2002), pp. 631–636.
  • S. Passamonti, M. Terdoslavich, N. Medic, A. Margon, A. Cocolo, F. Micalli, G. Decorti, and M. Franko, Uptake of bilirubin into HepG2 cells assayed by thermal lens spectroscopy, Function of bilitranslocase, FEBS J. 272 (2005), pp. 5522–5535.
  • S. Passamonti, M. Terdoslavich, R. Franca, A. Vanzo, F. Tramer, E. Braidot, E. Petrussa, and A. Vianello, Bioavailability of flavonoids: A review of their membrane transport and the function of bilitranslocase in animal and plant organisms, Curr. Drug Metab. 10 (2009), pp. 369–394.
  • M. Terdoslavich, Molecular mechanisms of organic anion transport, PhD disseration, University of Trieste, Italy, PhD disseration, 2005.
  • A. Karawajczyk, V. Drgan, N. Medic, G. Oboh, S. Passamnonti, and M. Novič, Properties of flavonoids influencing the binding to bilitranslocase investigated by neural network modelling, Biochem. Pharm. 73 (2007), pp. 308–320.
  • Š. Župerl, S. Fornasaro, M. Novič, and S. Passamonti, Experimental determination and prediction of bilitranslocase transport activity, Anal. Chim. Acta. 705 (2011), pp. 322–333.
  • S. Passamonti, U. Vrhovsek, A. Vanzo, and F. Mattivi, The stomach as a site for anthocyanins absorption from food, FEBS Lett. 544 (2003), pp. 210–213.
  • A. Maestro, M. Terdoslavich, A. Vanzo, A. Kuku, F. Tramer, V. Nicolin, F. Micalli, G. Decorti, and S. Passamonti, Expression of bilitranslocase in the vascular endothelium and its function as a flavonoid transporter, Cardiovasc. Res. 85 (2010), pp. 175–183.
  • M. Terdoslavich, I.A. de Graaf, J.H. Proost, A. Cocolo, S. Passamonti, and G.M. Groothuis, Bilitranslocase is involved in the uptake of bromosulfophthalein in rat and human liver, Drug Metab. Lett. 6 (2012), pp. 165–173.
  • I. Huber-Ruano and M. Pastor-Anglada, Transport of nucleoside analogs across the plasma membrane: A clue to understanding drug-induced cytotoxicity, Curr. Drug Metab. 10 (2009), pp. 347–58.
  • J.D. Young, S.Y.M. Yao, J.M. Baldwin, C.E. Cass, and S.A. Baldwin, The human concentrative and equilibrative nucleoside transporter families, SLC28 and SLC29, Mol. Aspects. Med. 34 (2013), pp. 529–547.
  • J.H. Gray, R.P. Owen, and K.M. Giacomini, The concentrative nucleoside transporter family, SLC28, Pflugers Arch. 447 (2004), pp. 728–734.
  • S.A. Baldwin, P.R. Beal, S.Y. Yao, A.E. King, C.E. Cass, and J.D. Young, The equilibrative nucleoside transporter family, SLC29, Pflugers Arch. 447 (2004), pp. 735–743.
  • H.S. Milton, V.S. Jr. Reddy, D.G. Tamang, and A. Västermark, The transporter classification database, Nucleic Acids Res. 42 (2014), pp. 251–258; database available at http://www.tcdb.org.
  • A. Roy, Choudhury and M. Novič, Data-driven model for the prediction of protein transmembrane regions, SAR QSAR Environ. Res. 20 (2009), pp. 741–754.
  • A. Roy Choudhury, Development of transmembrane region prediction algorithms and structural elucidation of bilitranslocase, PhD dissertation, Jožef Stefan International Postgraduate School, Ljubljana, Slovenia, 2013.
  • A. Perdih, A. Roy Choudhury, Š. Župerl, E. Sikorska, I. Zhukov, T. Solmajer, and M. Novič, Structural analysis of a peptide fragment of transmembrane transporter protein bilitranslocase, PLoS One 7 (2012), p. e38967.
  • A. Roy Choudhury, A. Perdih, Š. Župerl, E. Sikorska, T. Solmajer, S. Jurga, and I. Zhukov, M. Novič, Structural elucidation of transmembrane transporter protein bilitranslocase: Conformational analysis of the second transmembrane region TM2 by molecular dynamics and NMR spectroscopy, Biochim. Biophys. Acta. 1828 (2013), pp. 2609–2619.
  • A. Cherkasov, E.N. Muratov, D. Fourches, A. Varnek, I.I. Baskin, M. Cronin, J. Dearden, P. Gramatica, Y.C. Martin, R. Todeschini, and V. Consonni, V.E. Kuz’min, R. Cramer, R. Benigni, C. Yang, J. Rathman, L. Terfloth, J. Gasteiger, A. Richard, and A. Tropsha, QSAR Modeling: Where have you been? Where are you going to?, J. Med. Chem. 57 (2014), pp. 4977–5010.
  • A. Tropsha, Best practices for QSAR model development, validation, and exploitation, Mol. Inform. 29 (2010), pp. 476–488.
  • A. Tropsha, P. Gramatica, and V.K. Gombar, The importance of being earnest: Validation is the absolute essential for successful application and interpretation of QSPR models, QSAR Comb. Sci. 22 (2003), pp. 69–77.
  • D. Vidal, R. Garcia-Serna, and J. Mestres, Ligand-based approaches to in silico pharmacology, Methods Mol. Biol. 672 (2011), pp. 489–502.
  • A. Roy Choudhury, Š. Župerl, and S. Passamonti, M. Novič, Structure elucidation of transmembrane proteins using public-available databases and experimental data on competitive inhibition, Acta Chim. Slov. 58 (2011), pp. 385–392.
  • S.C. Zimmermann, J.M. Sadler, P.I. O’Daniel, N.T. Kim, and K.L. Seley-Radtke, ‘Reverse’ carbocyclic fleximeres: Synthesis of a new class of adenosine deaminase inhibitor, Nucleosides, Nucleotides Nucleic Acids 32 (2013), pp. 137–154.
  • O.R. Wauchope, C. Johnson, P. Krishnamoorthy, G. Andrei, R. Snoeck, J. Balzarini, and K.L. Seley-Radtke, Synthesis and biological evaluation of a series of thieno-expanded tricyclic purine 2′-deoxy nucleoside analogues, J. Bioorg. Med. Chem. 20 (2012), pp. 3009–3015.
  • M.S. Novikov, V.T. Valuev-Ellston, D.A. Babakov, M.P. Paramonova, A.V. Ivanov, S.A. Gavryushov, A.L. Khandazhinskaya, S.N. Kochetkov, C. Pannecouque, G. Andrei, R. Snoeck, J. Balzarini, and K.L. Seley-Radtke, N1, N3-distributed uracils as nonnucleoside inhibitors of HIV-1 reverse transcriptase, J. Bioorg. Med. Chem. 21 (2013), pp. 1150–1158.
  • M.M. Dias, N.F.L. Machado, and M.P.M. Marques, Dietary chromones as antioxidant agents – the structural variable, Food Funct. 2 (2011), pp. 595–602.
  • N.F.L. Machado, R. Calheiros, S.M. Fiuza, F. Borges, A. Gaspar, J. Garrido, and M.P. Marques, Phenolic esters with potential anticancer activity – the structural variable, J. Mol. Model. 13 (2007), pp. 865–877.
  • Organsiation for Econmic Co-operation and Development, OECD guidance document on the validation of (quantitative) structure-activity relationship [(Q)SAR] models, ENV/JM/MONO 2, OECD, Paris, 2007.
  • D. Habrant, S. Poigny, M. Ségur-Derai, Y. Brunel, B. Heurtaux, T. Le Gall, A. Strehle, R. Saladin, S. Meunier, C. Mioskowski, and A. Wagner, Evaluation of antioxidant properties of monoaromatic derivatives of pulvinic acids, J. Med. Chem. 52 (2009), pp. 2454–2464.
  • A. Le Roux, I. Kuzmanovski, D. Habrant, S. Meunier, P. Bischoff, B. Nadal, S.A.L. Thetiot-Laurent, T. Le Gall, A. Wagner, and M. Novič, Design and synthesis of new antioxidants predicted by the model developed on a set of pulvinic acid derivatives, J. Chem. Inf. Model. 51 (2011), pp. 3050–3059.
  • K. Venko, Š. Župerl, and M. Novič, Prediction of antiprion activity of therapeutic agents with structure-activity models, Mol. Divers. 18 (2014), pp. 133–148.
  • G.L. Sottocasa, S. Passamonti, L. Battiston, L. Pascolo, and C. Tiribelli, Molecular aspects of organic anion uptake in liver, J. Hepatol. 24 (1996), pp. 36–41.
  • S. Passamonti and G.L. Sottocasa, The quinoid structure is the molecular requirement for recognition of phthaleins by the organic anion carrier at the sinusoidal plasma membrane level in the liver, Biochim. Biophys. Acta. 943 (1988), pp. 119–125.
  • M.J.S. Dewar, E.G. Zoebisch, E.F. Healy, and J.J.P. Stewart, Development and use of quantum mechanical molecular models. AM1: A new general purpose quantum mechanical molecular model, J. Am. Chem. Soc. 107 (1985), pp. 3902–3909.
  • A.R. Katritzky, V.S. Lobanov, and M. Karelson, Codessa 2.0, Comprehensive descriptors for structural and statistical analysis, University of Florida, USA, 1994; software available at http://www.semichem.com/codessa.
  • P. Gramatica, N. Chirico, E. Papa, S. Cassani, and S. Kovarich, QSARINS: A new software for the development, analysis, and validation of QSAR MLR models, J. Comput. Chem. 34 (2013), pp. 2121–2132.
  • J. Zupan and J. Gasteiger, Neural Networks in Chemistry and Drug Design, Wiley-VCH, Weinheim, Germany, 1999.
  • J. Zupan, M. Novic, and I. Ruisanchez, Kohonen and counterpropagation artificial neural networks in analytical chemistry, Chemometr. Intell. Lab. 38 (1997), pp. 1–23.
  • M. Novič and J. Zupan, Investigation of infrared spectra-structure correlation using Kohonen and counter-propagation neural network, J. Chem. Inf. Comput. Sci. 35 (1995), pp. 454–466.
  • C.C. Chang and C.J. Lin, LIBSVM: A library for support vector machines, ACM TIST 2 (2011), pp. 1–27; software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.
  • R. Leardi, Nature-inspired methods in chemometrics: Genetic algorithms and artificial neural networks, Elsevier, Amsterdam and Boston, 2003.
  • P. Gramatica, Principles of QSAR models validation: Internal and external, QSAR Comb. Sci. 26 (2007), pp. 694–701.
  • M. Vasighi and M. Kompany-Zareh, Classification ability of self organizing maps in comparison with other classification methods, MATCH Commun. Math. Comput. Chem. 70 (2013), pp. 29–44.
  • P. Baldi, S. Brunak, Y. Chauvin, C.A.F. Andersen, and H. Nielsen, Assessing the accuracy of prediction algorithms for classification: An overview, Bioinformatics 6 (2000), pp. 412–424.
  • V. Consonni, D. Ballabio, and R. Todeschini, Comments on the definition of the Q(2) parameter for QSAR validation, J. Chem. Inf. Model. 49 (2009), pp. 1669–1678.
  • A. Tropsha, P. Gramatica, and V.K. Gombar, The importance of being earnest: Validation is the absolute essential for successful application and interpretation of QSPR Models, QSAR Comb. Sci. 22 (2003), pp. 69–77.
  • N. Minovski, Š. Župerl, V. Drgan, and M. Novič, Assessment of applicability domain for multivariate counter-propagation artificial neural network predictive models by minimum Euclidean distance space analysis: A case study, Anal. Chim. Acta. 759 (2013), pp. 28–42.
  • P.C.H. Hollman, M.N.C.P. Bijsman, Y. van Gameren, E.P.J. Cnossen, J.H.M. de Vries, and M.B. Katan, The sugar moiety is a major determinant of the absorption of dietary flavonoid glycosides in man, Free Radical Res. 31 (1999), pp. 569–573.
  • A. Le Roux, E. Josset, S. Benzina, B. Nadal, M.D.E. Murr, B. Heurtaux, F. Taran, J.M. Denis, T. Le Gall, S. Meunier, and P. Bischoff, Evaluation of the radioprotective potential of the polyphenol norbadione A, Lett. Drug Des. Discov. 9 (2012), pp. 48–53.
  • A. Saija, M. Scalese, M. Lanza, D. Marzullo, F. Bonina, and F. Castelli, Flavonoids as antioxidant agents – importance of their interaction with biomembrane, Free Radical Bio. Med. 19 (1995), pp. 481–486.
  • V.P. Menon and A.R. Sudheer, Antioxidant and anti-inflammatory properties of curcumin, Adv. Exp. Med. Biol. 595 (2007), pp. 105–125.
  • S. Biljali, V.A. Hadjimitova, M.N. Topashka-Ancheva, D.B. Momekova, T.T. Traykov, and M.H. Karaivanova, Antioxidant and antiradical properties of esculin, and its effect in a model of epirubicin-induced bone marrow toxicity, Folia Med (Plovdiv). 54 (2012), pp. 42–49.
  • C.Y. Shaw, C.H. Chen, C.C. Hsu, C.C. Chen, and Y.C. Tsai, Antioxidant properties of scopoletin isolated from Sinomonium acutum, Phytother. Res. 17 (2003), pp. 823–825.
  • Y. Yilmaz and R.T. Toledo, Major flavonoids in grape seeds and skins: Antioxidant capacity of catechin, epicatechin, and gallic acid, J. Agr. Food Chem. 52 (2004), pp. 255–260.
  • H. Rudyk, S. Vasiljevic, R.M. Hennion, C.R. Birkett, J. Hope, and I.H. Gilbert, Screening Congo Red and its analogues for their ability to prevent the formation of PrP-res in scrapie-infected cells, J. Gen. Virol. 81 (2000), pp. 1155–1164.
  • M.L. Bolognesi, H.N.A. Tran, M. Staderini, A. Monaco, A. Lopez-Cobenas, S. Bongarzone, X. Biarnes, P. Lopez-Alvardo, N. Cabezas, M. Caramelli, P. Carloni, J.C. Menendez, and G. Legname, Discovery of a class of diketopiperazines as antiprion compounds, Chem. Med. Chem. 5 (2010), pp. 1324–1334.
  • M.S. Hung, Z. Xu, Y.C. Lin, J.H. Mao, C.T. Yang, P.J. Chang, D.M. Jablons, and L. You, Identification of hematein as a novel inhibitor of protein kinase CK2 from a natural product library, BMC Cancer. 9 (2009), p. 135.
  • J.J. Hong, T.S. Jeong, J.H. Choi, J.H. Park, K.Y. Lee, Y.J. Seo, S.R. Oh, and G.T. Oh, Hematein inhibits tumor necrotic factor-alpha-induced vascular cell adhesion molecule-1 and NF-kappaB-dependent gene expression in human vascular endothelial cells, Biochem. Biophys. Res. Commun. 281 (2001), pp. 1127–1133.
  • J.H. Choi, T.S. Jeong, D.Y. Kim, and Y.M. Kim, H.J. Na, K.H. Nam, S.B. Lee, H.C. Kim, S.R. Oh, Y. Choi, S.H. Bok, and G.T. Oh, Hematein inhibits atherosclerosis by inhibition of reactive oxygen generation and NF-kappaB-dependent inflammatory mediators in hyperlipidemic mice, J. Cardiovasc. Pharmacol. 42 (2003), pp. 287–295.
  • G.T. Oh, J.H. Choi, J.J. Hong, D.Y. Kim, S.B. Lee, J.R. Kim, C.H. Lee, B.H. Hyun, S.R. Oh, S.H. Bok, and T.S. Jeong, Dietary hematein ameliorates fatty streak lesions in the rabbit by the possible mechanism of reducing VCAM-1 and MCP-1 expression, Atherosclerosis 159 (2001), pp. 17–26.
  • D.A. Kocisko, G.S. Baron, R. Rubenstein, J. Chen, S. Kuizon, and B. Caughey, New inhibitors of scrapie-associated prion protein formation in a library of 2.000 drugs and natural products, J. Virol. 77 (2003), pp. 10288–10294.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.